
Hierarchy of Generalized Maps
for Modeling and Rendering

Complex Indoor Scenes
D. Fradin & D. Meneveaux & P. Lienhardt

Signal Image Communication laboratory, CNRS, University of Poitiers, France
{fradin,daniel,lienhardt}@sic.univ-poitiers.fr

Abstract

Geometric modeling softwares make use of topological models to describeand modify an environment. Topology
expresses adjacency and incidence relations between objects. It corresponds to a fine representation often considered as
time and memory consuming for rendering or lighting simulation. In this paper, we propose a topology-based representation
dedicated to complex indoor scenes. Taking into account memory management and performances, our model enlarges a
topological model (calledgeneralized maps) with multi-partition and hierarchy. Multi-partition allows the user to group
sets of objects together according to semantics. The hierarchy representation provides a coarse-to-fine description of the
environment. Our modeler prototype was used to create buildings made upwith several million polygons. Resulting
topological information has been efficiently used in the context of several applications such as global illumination and wave
propagation simulation at 1 GHz.

CR Categories: I.3.5 (Computer Graphics): Computational Geometry and Object Modeling ; I.3.8 (Computer Graphics):
Applications.
Keywords: geometric modeling, large buildings, partitions, hierarchical model, rendering.

1 Introduction

During the past decade, a lot of efforts have been focused
on the rendering of complex environments. However, the
high number of geometric primitives as well as the large
variety of information (photometry, textures, radiometry,
etc.) necessary to describe the scene still remain a ma-
jor barrier to overcome. The choice of a judicious data
structure is a crucial point for reducing time and space
complexity. We are interested in the use of topology for
both modeling and rendering large indoor scenes. Previ-
ous work in the area shows that a topological representa-
tion has to be reconstructed from the scene for efficiently
performing lighting simulation or walkthrough in large
buildings [Air90, FTSK96, MBMD98]. This paper goes a
step further: topology used for modeling also accounts for
rendering constraints.

Indoor scenes (Figure 1) are naturally organized into
subparts: rooms, floors, wings, walls, etc. At a lower
level, this corresponds to subdivisions of the 3D space
into vertices, edges, faces and volumes. Subdivision ele-
ments are commonly calledcells, linked together through
adjacency and incidence relationships defining the model
topology.

For modeling such an environment, it is necessary to
define a topological model that fits the building structure.
Local operations also have to maintain the overall model

Figure 1: (left) Hierarchical topology representation of a
simple building. The upper-right part contains the outer
walls description. The bottom-left part corresponds to the
two rooms contained in the next hierarchy level. Links are
explicitly described between the two levels. (right) Inside
view of one of our buildings with global illumination.

consistency during the construction process. Unfortu-
nately, a "brute force" topological description of complex
architectural environments requires a lot of memory. This
is mainly due to the huge number of needed polygons as
well as the topological information corresponding to in-
cidence and adjacency relationships. Usually the whole
scene does not fit in memory. Moreover, the high num-
ber of geometric primitives to be displayed on a screen
often makes the scene editing unpracticable. To face this
problem with a general modeler, the user has to elaborate

1

specific modeling strategies depending on the nature of
the environment (architecture, automotive, etc.).

This is why we propose to enrich a topological model
with a hierarchical description which allows to create a
building from a coarse description to its precise details. In
this context, each operation corresponds to local modifica-
tions of topology and geometry. Moreover, as explained
above, a hierarchical topology representation is also use-
ful for lighting simulation and visualization.

Our model is dedicated to building description includ-
ing information for both modeling and rendering. It cor-
responds to a structured space subdivision, defined so that
adjacency and visibility graphs such as those defined in
[ARB90, Tel92, MBMD98] can be easily and efficiently
built. Moreover, information extracted from our model
has n used in [FMH05] for reducing computing time dur-
ing global illumination and rendering.

For handling a complex scene, we believe that it is
worth to make use of topological information about the
scene even though it increases the storage of all the data
structure involved: (i) topology facilitates the scene con-
struction (for instance through local operations such as
split, extrusion, etc.); (ii) it provides a coherent repre-
sentation of space subdivisions with adjacency/incidence
relationships; (iii) taking topological information intoac-
count can drastically reduce the time complexity of visi-
bility computations during the rendering process.

In this paper, we address this problem and show that
a fine topology representation, necessary for modeling
operations, also provides adequate information for ren-
dering complex indoor scenes. Our topological model
extendsgeneralized mapsproposed in [Lie94] with two
important features: multi-partition and hierarchy. The
multi-partition concept allows to create groups of objects
(groups of rooms for example in Figure 2.b) while hier-
archy (Figures 1 and 2.a) makes it possible to perform a
given processing only on a subpart of the scene.

a. A hierarchical decomposition of a building

Teaching

Administration

Offices Classrooms

b. Several partitions of a building (multi-partition)

Figure 2: (a) Hierarchy representation for a simple build-
ing and (b) two partitions (or a multi-partition representa-
tion).

The originality of this paper concerns the design of a
model accounting for two generally separated areas: mod-

eling and rendering. Historically, the modeling commu-
nity does not take into account rendering problems and
conversely, rendering programs do not exploit efficiently
topology information. Our contributions concern the fol-
lowing points:

• A multi-partition and hierarchy representation dedi-
cated to the modeling and rendering of complex in-
door scenes;

• A set of topological operations associated with this
representation;

• A modeler prototype for large buildings with furni-
ture;

• Results concerning visibility computations and
global illumination with our topological model.

Section 2 presents the work most closely related to our
approach. A description of our model based on general-
ized maps and labeling is given in section 3. Construc-
tion operations and modeler implementation are defined
in section 4. Results concerning lighting simulation and
rendering are discussed in section 5.

2 Related Work and Choices

We aim at representing large buildings, actually corre-
sponding to 3D topological objects, made up with ver-
tices, edges, faces and volumes. Note that cells do not
necessarily have regular shapes. For instance a simpli-
cial description is not desired. Many topological mod-
els have been proposed in the literature for handling dif-
ferent classes of subdivisions (oriented surfaces, mani-
fold, non manifold, etc.) for any dimension. Examples
of such structures are adjacency graphs [RO89], ordered
models (as defined in [Bri93]), 2D or 3D edge-based mod-
els [Bau75, GS85, Wei86] or higher dimensional models
[Bri93, Lie94].

Incidence graphs (such as [RO89]) do not allow multi-
incidence (see [Lie94]). Coherence constraints necessary
to represent an orientable 3D manifold with an incidence
graph cannot easily be expressed. The definition of con-
struction operators accounting for these constraints and
guaranteeing thus topological consistency of modeled ob-
jects can be also difficult for dimension 3 and higher (see
[Wei88]). This is the reason why ordered models have
been introduced. They are mainly defined with a single
type of basic element and links between these elements
[Bri93, Lie94].

For the reasons explained above, we chose an ordered
topological model. Complexity studies have shown that
for 2D and 3D manifold (surface subdivisions orR3 sub-
divisions), costs for representing an ordered model com-
pared to an incidence graph are comparable [FB00], in
particular for attributes management.

The objects we wish to represent are buildings com-
posed of volumes (walls, rooms, floors, etc.) sharing

2

faces. Topologically speaking, it corresponds to 3D ori-
entable manifolds. In [Lie91], it has been shown that
models defined to represent 3D manifolds are compara-
ble either to 3D maps (for orientable ones without bound-
aries) or to 3D generalized maps (for orientable or not ori-
entable ones, with or without boundaries). Even though
generalized maps defined in 3D are a bit more costly than
3D maps in terms of memory representation, we chose
this model because it allows to represent objects with ex-
plicit boundaries, operations are easier to implement and
the cost difference is low. Moreover, generalized maps are
defined homogeneously in any dimension.

The major drawback is related to the data structure size.
For complex environments, several million polygons may
have to be defined; the model needs to be structurally im-
proved. This is why we propose a hierarchical description
adapted to large buildings.

Topology-based hierarchical representations have been
used in several areas. For instance, in the field of im-
age processing, pyramidal models have been used for
long to handle several subdivisions of a given 2D image.
Each region is linked with its associated decomposition
in the next/previous level [JM92, BK03]. In the context
of 3D applications, multi-resolution meshes offer several
descriptions (more or less precise) of the same object.
For example, hierarchical descriptions based on simplex-
based models (or convex cells) have been proposed in
[DF88], [CDM+94] and [PFP95]. TheMultiresolution
Simplicial Model[DPM97] unifies the previous models
with the help of a graph. The difference between two
successive levels is expressed through transformations ap-
plied to topology and geometry (with or without overlaps).
The object is then represented as an acyclic graph account-
ing for the different levels. This model does not explicitly
represent each hierarchy level, some operations have to be
performed to reconstruct a given description of the object.
Since an explicit description of the scene is necessary for
our application, we chose to conceive a specific hierarchi-
cal model.

Rendering complex scenes is still not straightfor-
ward for two main reasons: (i) the memory needed
for storing the database and (ii) the number of objects
to handle. Space subdivision methods help to man-
age memory and reduce the number of objects stored
in memory. In this case, a topological representation
is needed. Generally, the scene subdivision is (semi-
)automatically reconstructed from a list of polygons
[LCCO03, WWSR03, MPB03]. The scene subdivision
dramatically reduces the inter-region visibility computa-
tion cost. There exists a vast literature in this area (regular
grids, BSP/K-d trees, etc.) with several approaches ded-
icated to large buildings [ARB90, TFFH94, MBMD98])
for walkthrough [FTSK96] or lighting simulation [TH93,
TFFH94, MBM98]. However, the obtained results do not
reach the precision of a manual partitioning. Topologi-
cal information used during the modeling process, when
available, can be most useful to avoid this reconstruction.
Our representation makes it possible to extract adjacency
or visibility graphs used in [ARB90, TFFH94, MBM98],

or viewpoint-based visibility (see section 5). Such ex-
tracted information has already been used for rendering,
global illumination [FMH05] and 1 GHz wave propaga-
tion [VPE04].

3 Hierarchical Model

First, we define a model based on labeling, convenient for
theoretical purposes. It is used to define the basic concepts
of our data structure, i.e. hierarchy and multi-partition.
Second, we propose an optimization of the model, taking
into account practical implementation aspects.

3.1 Generalized Maps and Labeling

We choose generalized maps defined in [Lie94] for the
following reasons:

• They can represent subdivisions of 3D space;

• They are defined in an homogeneous way: a single
type of basic element (Figure 3). This simplifies the
formal definition of many operations.

• Very simple operations for merging cells have al-
ready been defined [DL03], providing a theoretical
basis for our hierarchical representation

• Any type of attributes (such as geometry, photom-
etry, texture, etc.) can be associated with anyn-
dimensional cell.

Definition 1 - generalized maps [Lie94]:
Let n≥ 0; an n-dimensional generalized map (n-G-map)
is defined by an(n+2)− tuple G = (D,α0,...,αn), where:

• D is a finite set ofdarts;

• αi is an involution on D for0≤ i ≤ n;
(a bijection f is an involution iff f2 = Id);

• αi ◦α j is an involution for i≥ 0 and i+2≤ j ≤ n.

orbits: An orbit is described by a dart and a set of invo-
lutions. It provides the set of all darts that can be reached
by any composition of the given involutions (graph traver-
sal).

cells: A i-dimensional cell (or i-cell) incident to a dart
is the set of all darts that can be reached by any composi-
tion of all involutions exceptαi .

attributes: Each cell can be provided with different
types of data such as point coordinates for vertices (here,
we only use a linear representation), photometry for faces
or any semantical information. Data are associated with
an orbit (often defining a cell).

In practice, attributes associated with a cell are stored
on a single dart. This implies to scan all darts of the cell
to retrieve the information. During the modeling process,
this reduces the required memory. If attributes are often
needed, it is possible to propagate the information onto

3

a. ev

F

b.

α0
α1
α2

1Vertex Edge Face
Darts

Figure 3: Intuitively, a dart can be seen as a cell-tuple
[Bri93], i.e. a sequence of incident cells of increasing di-
mensions. For instance, dart 1 in (b) corresponds to vertex
v of edgee of faceF in (a). If we think of a G-map as a
set of darts linked with involutions, a i-cell is a set of darts
connected with all involutions exceptαi . For instance, a
vertex (an edge, a face) is the set of darts connected with
α1 andα2 (resp.α0 andα2, α0 andα1).

each dart to accelerate queries. Appendix A.1 and [Mok]
provide more details about implementation.

We are mainly interested in grouping volumes as
rooms, walls, etc. For example we can define groups cor-
responding to a gallery for guided walkthrough in a mu-
seum, groups of rooms corresponding to the same floor or
same wing, etc. It can also be useful to group several el-
ements of the scene according to their use or appearance.
An obvious way to represent groups within a subdivision
consists in associating a label with each cell. A group is
then a set of cells having the same label.

We define the notion of group in any dimension. This
definition can be extended for lower dimensional cells
[Fra04].

Definition 2 - partition functions (Figure 4):
Let G = (D,α0,...,αn) be a n-G-map andφ : D → N be a
function associating a label with each dart of D:
φ is a partition functionof G iff φ(d) = φ(d′) for any
darts d and d′ which belong to the same n-cell.

The use of multi-labeling (i.e. associating several labels
with a single cell) allows the user to create as many par-
titions as necessary, even with overlaps (e.g. a room can
be shared by a floor and a wing). A hierarchy representa-
tion can also be defined with the help of a multi-partition.
Each level of the hierarchy corresponds to a partition and
a constraint of consistency has to be satisfied: a set of cells
which is grouped at one level is still grouped at a higher
level (see Figure 5).

Definition 3 - partition functions for hierarchy:
A hierarchyis defined by a set of functions{(φi)}i∈{1..p}

such thatφi(d) = φi(d′) ⇒ φ j(d) = φ j(d′), for j ≤ i.
As explained above, labeling is a theoretical represen-

tation of partitions and hierarchies. Unfortunately, a topo-
logical model relying on labels requires a high amount of
memory since each dart must be provided with one inte-
ger label per partition and as many integer labels as hi-
erarchy nodes. Labeling also induces too many redun-
dancies which limits its use practically. To overcome the
above problems, we propose in our model an equivalent

0α

2
2α
1α

2
2 2

2

2

21 1

1

1

1

1

1

1 1

1 1

1

1

1
111

1 11
1

1

1
1 222

φ

12

2

2

2 2 2

2

2

22

2 2

2

22

2

2 2
2

22

2

2

Figure 4: (left) a partition of 2-cells (faces): all darts are
provided with a label.φ corresponds to the function that
assigns a label to each dart. (right) the corresponding ob-
ject with groups.

2 2 3 3

33222

1 1 1 1 1
1 1 1 1 1

44322

3 3 3 5 5
2

Root of hierarchy

Intermediate detail

Maximum detail

Figure 5: Two labels are associated with each face: the
first one (top left) defines the intermediate detail, the sec-
ond one (bottom right) defines the root of the hierarchy.

representation that brings the advantages of a topological
model while allowing fast access to the geometry associ-
ated with a partition or hierarchy level. We need to (i) re-
duce the cost due to labeling and (ii) provide a fast access
to topology and geometry.

Therefore, we propose to separate the representations
of multi-partition and hierarchy, since they are handled by
different sets of operations. For the sake of efficiency, we
also need the model to require a small size of memory.
We chose to represent partitions with the help of boolean
marks associated with involutions. Hierarchy explicitly
defines details associated with cells avoiding redundan-
cies.

To sum up, the main features of our topological model
are the following:

• representation of groups of cells (e.g. set of rooms
for a single floor);

• hierarchical building representation: contour, floors,
rooms, furniture, etc.;

• capable of handling a high number of polygons (our
largest manually created scene is composed of 5 mil-
lion polygons);

• with efficient data access (darts, geometry, other at-
tributes) for modeling and rendering.

4

3.2 Multi-Partition

From a technical point of view, a G-map can be considered
as a graph where nodes correspond to darts and edges link
two nodes when the corresponding darts are linked by an
involutionα. A connected component for a G-map fits the
usual notion of connected component for a graph. For rep-
resenting connected subgraphs, one has to distinguish be-
tween the subgraph edges and the other edges. A boolean
mark can easily represent this distinction.

Formally, we get the following definition:
Definition 4 - group involutions and multi-partitions:

Let G = (D,α0,...,αn) be an n-G-map. A group involution
αg

n is an involution on D such that:

• (D,α0, ...,αn−1,αg
n) is a G-map;

• ∀d,d′ ∈ D such thatαn(d) = d′, either αg
n(d) = d′

andαg
n(d′) = d, or αg

n(d) = d andαg
n(d′) = d′.

A multi-partition is represented by a set of group involu-
tions, one for each partition (see Figure 6).

Note that a group involution can be deduced from a par-
tition function.

U

α 2 α 2
α 2

2α
g

α
g

2

22
α

g
1α

g
2

�
�
�
�

Figure 6: On the left, two different partitions of a same
G-map. αg

2 are shown in bold for each partition. On the
right, the resulting superimposed multi-partition.

Note that the definition ofαg links implies new orbits
called group orbits (coverage of groups). New attributes
calledgroup attributescan thus be defined. In practice,
they are used for storing semantical or geometrical infor-
mation. As explained above,αg have essentially been de-
fined for grouping volumes such as rooms or walls. How-
ever, we also useαg

1 for grouping aligned edges orαg
2 for

grouping coplanar faces, so that attributes can be factor-
ized and some geometry computations avoided.

3.3 Hierarchy

As for multi-partitions, labeling is not suitable for hierar-
chy representation, since for every operation each level of
the hierarchy would have to be deduced from labels. Such
computation would importantly decrease performances
during the scene update, display and obviously also for
any other processing (e.g. lighting simulation or render-
ing). We thus propose a model dedicated to (and efficient
for) such operations.

The hierarchical representation proposed in [DPM97]
implies a graph evaluation with ambiguities management,
every time the model geometry is required. In our appli-
cation, we prefer an explicit representation. For example,
an empty floor is detailed by a unique set of rooms. If de-
sired, overlaps admitted in [DPM97] can be represented

by multi-partitions. For image processing, a pyramidal
structure can be deduced from the most detailed image by
successively removing or contracting cells [BK03]. Con-
versely, during the modeling process for buildings, we
rather construct hierarchy from the most simple descrip-
tion to the most detailed one.

In our application the scene is constructed by succes-
sive additions of details. This is well adapted to interac-
tive modeling since the building structure is modified on
the fly and only one cell is modified at the same time. For
a given level and a given cell in this level (e.g. a room in
a floor), the cell is duplicated and successive topological
operations such as split ofi-cells, extrusions, etc. (cor-
responding to opposite operations of removal/contraction
used in image processing) are applied. A linkη is defined
between the current level and its lower level:η associates
each dart to its copy (such as in Figure 7).

Definition 5 - hierarchy:
A hierarchy is a sequence of G-maps
((Di ,αi

0, ...,α
i
n))i=0,m, m being the number of levels.

Levels are linked together with hierarchical linksηi .
Note thatηi is a bijection from a subset of Di with a
subset of Di+1. The model is kept consistent through our
construction operations.

Note that if we consider a hierarchy of G-maps defined
with labeling,ηi functions can be deduced from succes-
sive applications of removal and contraction operations
[DL03]. From a theoretical point of view, it makes it pos-
sible to prove the model validity.

splitsplit

edge face
copy

G
1

ηG
0

Figure 7: The top image illustrates the process for adding
a detail to a 2-cell. The bottom image represents the ob-
tained hierarchical G-map.

4 Operations and Modeler

Our modeler describes a building as a 3D space subdivi-
sion organized according to our multi-partition and hier-
archy model. The topology representation is kept hidden
to the user unless he decides to select the option"visualize
topology"(as illustrated in the top image of Figure 17).

The building modeler is based on a topological kernel
implementing G-maps in C++ [Mok]. This kernel defines
elementary operations for manipulating darts, e.g. inser-

5

tion/removal of cells with geometry and attributes such as
materials for volumes, photometry for faces, coordinates
for vertices, etc. Several software layers have been added
to it: a first layer defines partitions; the second one is used
for hierarchy (note that each hierarchy level has its own
multi-partition); the third layer sets up all the operations
in charge of the building construction.

For some parts of a building, geometrical inclusion
needs to be explicit. This type of information is not avail-
able in the initial topological kernel. We thus define op-
erations for including a face (or a volume) in another one.
This is done for avoiding geometrical tests with the help
of topological information. For example, the window of a
facade is included in the outside faces of the building, fur-
niture is included in a room, etc. Operations for handling
inclusion are described in appendix A.2.

4.1 Multi-partition layer

For implementing multi-partitions, involutionsαi are
marked by means of a boolean indicating if two sewed
darts are grouped. Initially, each dart contains 4 pointers
toward darts corresponding toα0,α1,α2 andα3 (see ap-
pendix A.1). For multi-partitions, every pointer (except
α0, since such groups are irrelevant) is associated with 8
booleans (one byte) so that 8 different partitions can be set
for each dimension. These booleans representαg links.
We have also added in the G-map class (containing a set
of darts, appendix A.1) the operations allowing to manip-
ulate partitions: group two cells of same dimension, attach
an attribute to a group, etc.

Figure 8: Left: The user selects some corridors and de-
fines a group. Right: Group involutions (in bold) are au-
tomatically defined between selected corridors and each
shared opening.

The methodlink_i_g(Dart d, int i, int p) groups two

darts. It makes the assumption thatd is already sewed
with a dartd′ by αi . The boolean corresponding to the
partition p is set to true.

sew_i_g(Dart d, int i, int p) groups twoi-cells. It as-
sumes that thei-cell carried byd (namedc) is already
linked to anotheri-cell (namedc′) by αi . It uses the
methodlink_i_g to group every dart of the cellc with the
corresponding dart of cellc′.

unlink_i_g(Dart d, int i, int p) andunsew_i_g(Dart d,

int i, int p) are the opposite operations.
The methodisInSameGroupedOrbit(Dart d1, Dart

d2, gorbit orb) tests if two dartsd1 andd2 belong to
the same group defined by the orbitorb. A group orbit
is defined by a partition numberp and a cell dimensioni
(corresponding to anαi involution). This method is only
used for attributes management.

Figure 8 shows an example of a partition: all the cor-
ridors of a floor are grouped. The user can associate any
type of semantical information with any group. Details
about group orbits and attributes are given in appendix
B.1.

4.2 Hierarchy Layer

Each hierarchy level is represented by one G-map. There-
fore, one level can be loaded into memory and managed
independently of the others for local operations such as
wall creation and furnishing. The hierarchical linkη is
represented by two pointers in the dart class: a pointer
toward the parent dart and one toward child dart. The G-
map class contains also two pointers indicating the parent
and child G-maps (see appendix B.2).

The main methods for editing hierarchy are
the following ones. createChildMap() allows
to create the child G-map of the current G-map.
createChildDarts(Dart start, orbit orbit) creates a copy
of a cell (given by a dart and an orbit) in the child G-map.
New darts are linked to the original ones withη links.
Later on, this cell can be detailed according to operations
provided by the layer dedicated to buildings.

Another important operation during the hierarchy edi-
tion is the search of a parent dart. When a modification
operates at a given hierarchy level (high level operations:
wall or opening insertion for instance), the different parent
cells have to be known to be able to propagate necessary
changes.

Child pointers are defined for every dart of a parent
volume. On the other hand, only a small number of
darts in the child G-map are directly linked to their parent
darts. Therefore, when operations have to be propagated
to the upper hierarchy level, we need a method provid-
ing the parent cell of any dart. A traversal of cells from
the lower to the higher dimension has to be performed.
This traversal has been implemented in the method
f indParentDart(Dart d, Dart & parent, orbit &orb). It
returns the parent cell of a dartd (parentandorb are out-
put parameters). The parent cell is described by the dart
parentand the corresponding orbitorb: vertex, edge, face
or volume. Figure 9 illustrates the possible configurations

6

for the child dartd. For finding its parent cell, we have to
go through the current hierarchy level according to cells of
increasing dimension. Ifd is directly connected byη (dart
numbered 1 in the Figure), its parent dart is known and the
orbit returned is arbitrarily the vertex orbit. Whenη is not
defined (darts 2, 3 and 4), we first cover the edge carried
by the dart. If this edge contains a dart directly linked to
the parent cell (e.g. dart 2), the function returns the parent
dart as well as the edge orbit. Should the opposite occur
(darts 3 and 4), the dart containing theη link is searched
within the volume boundary faces (not sewed byα3). If it
is found on the boundary (dart 3),d is located in a face de-
tail. If not (dart 4),d is inside a parent volume and we thus
return the volume orbit and any dart of the parent volume
(all the detail is traversed until a parent dart is found). To
sum up, the parent of dart 1 is given byη, dart 2 has the
same parent as dart 1 (with a different orbit), the parent
of dart 3 can be any dart in the parent face of dart 1 and
any dart of the parent volume can be associated with dart
4. In the last two cases, our algorithm always returns the
closest dart in term of composition ofα involutions.

2

1

34

Figure 9: Cases that must be taken into account during
the search of a parent dart. Top left corner: a G-map de-
scribes the volume of a floor. Bottom: its detailed G-map
describes the walls disposition. Four darts (with numbers)
illustrate the different cases of a parent search. The darts
having a definedη link are shown in bold.

Note that in a standard G-map, marks are used to man-
age darts traversal, selection and modification operations.
For example, this is used for avoiding to process twice the
same dart. Marks are also essential for handling hierarchy
(see appendix B.2 for more details).

4.3 Building-Dedicated Operations

The two layers described above have been enlarged with
higher-level operations concerning building creation such
as extrusion, opening insertion and furnishing. Buildings
are described with 5 levels of hierarchy: building facade
(Figure 12.c), outer walls (Figure 12.d), floors with inner
walls (Figure 12.f), rooms and furniture (Figure 12.g and
12.h).

We have made a distinction between wallpapers and

walls (Figure 10). Wall volumes define the building struc-
ture while wallpaper faces define room volumes. Typi-
cally, with this decomposition electromagnetic attributes
are associated with walls for 1GHz wave propagation
while photometry is associated with wallpapers for light-
ing simulation and rendering. Thus, portals are defined as
volumes with two transparent faces.

Figure 10: A portal in a wall: (left) geometrical aspect
(right) split view illustrating darts andα involutions.

The building is constructed with the help of coarse-
to-fine operations. Some operations modify the whole
hierarchy description, for example when a window is
created in a room. The main operations for constructing
the building structure are the following.
extrudePolygonToMakeBuilding(int f loorNb, ...) cre-
ates the building structure from a 2D shape and a number
of floors. Three hierarchy levels are then defined: facade,
retaining walls and floors (Figure 12.a to 12.d).
createWall(...) creates a wall in a floor. When the new
wall is in contact with another one,α3-sewing is preceded
by a new face insertion in the already existing wall, so
that topology consistency be preserved. The new volumes
automatically created by the wall insertion are considered
as rooms.
insertOpening(...) inserts into a wall a new opening (door
or window) connecting two rooms. This method can
affect the whole hierarchy in some cases. For instance, a
window has to be placed in the room, the retaining walls
and the facade. Two examples of opening insertion are
provided in Figure 11. Numerous calls tof indParent
method are used for retrieving parent darts during propa-
gation of cells insertion (see B.4 for more details).
copyFloor(Dart src, Dart dest) copies the structure of
a floor (rooms, walls and openings) into another floor.
This function requires to duplicate an entire subtree in the
hierarchy.

Once the structure of rooms has been defined, it is
possible to add furniture with the following operations.
insertFurnitureInSelectedRooms(f urniture f) adds a
piece of furniture in each selected room. In the room
level, furniture is represented by a bounding box, with a
filename, a translation vector and a rotation matrix. Note
that selected darts are marked according to the methods
detailed in Appendix B.3, queries are made in constant
time.
deleteSelectedFurniture() removes the selected furniture
(shown as bounding boxes for the user).
insertLightSourceInRoom(...) adds a point and surface

7

a.

b. c.

Figure 11: Openings are always inserted in the third hi-
erarchy level. - a. Two openings to be inserted; the first
one is a door only modifying the lower hierarchy level; the
second one is a window propagated up to the root of the
hierarchy. - b. Whole hierarchy representation after in-
sertion of opening 1. For its creation, only the concerned
wall and the corresponding rooms are modified. - c. In
the case of a window, the retaining walls and the facade
are also modified.

light source in a room, considered as furniture with
radiometry.
copyRoomContent(Dart d) and pasteRoomContentTo(
list < dart > rooms) are used for copy/paste operations.
The first one creates a buffer in memory and copies all
the furniture included in the room carried by the dartd.
In practice only bounding boxes, transformations and
filenames are stored in memory. The second one copies
these volumes in the room list.

Appendix B.5 provides operations for modifying pho-
tometric and radiometric information during the modeling
process. Some functions also export our scenes in various
formats.

In this software layer, we have developed more
evolved operations concerning partitions. For example,
groupSelectedRooms(int partition) groups a set of
rooms as well as their openings, provided that they are
interconnected. It uses the operationsew_i_g and orbit
coverages.

4.4 Construction steps

As explained above, the scene produced by the modeler
contains a lot of information, necessary for modeling op-
erations. A building is never entirely displayed onto the
user screen. The program only displays the current hier-
archy level. An option allows the user to display the next
hierarchy levels except furniture geometry (replaced by
bounding boxes) as shown in Figures 12.g and h and 17
(bottom image).

The modeler guides the user according to a coarse-to-
fine construction.

1. Building shape
The user firstly defines the building contour (Figure 12.a)
and provides the number of floors as well as the wall thick-
ness. The defined polygon is extruded for creating the
building facade with topological structure and hierarchy
root (see Figure 12.c andMovie 01in website [Mod]).

In a second hierarchy level, a copy of the user-defined
polygon is extruded to define outer walls (Figure 12.b) and
floors (Figure 12.d). The two hierarchy levels are auto-
matically linked: each dart of the first level is linked to its
child with the help ofη-links.

2. Editing floors
When the user needs to detail a floor, the corresponding
volume is copied in a third hierarchy level andη-links are
automatically set. Note that each floor can be indepen-
dently edited by the user and/or duplicated.

The floor selection allows the user to describe inner
walls. With a 2D view, a polygonal line is drawn and
extruded to define the actual wall (Figure 12.e). The pro-
gram automatically deduces all room volumes from inner
walls.

Several types of openings such as doors and windows
are proposed to the user (Figure 12.f). They can be placed
either on inner walls or outer walls. An opening corre-
sponds to an empty volume inserted inside a wall.Movie
02 andMovie 03in [Mod] illustrates the result of this op-
eration.

While defining the building structure, the user can load
a plan of a building (or a horizontal section). The image
is shown as a background image for simplifying the build-
ing design. This option is much useful for reproducing
existing buildings (see Figure 18.a).

During walls and openings creation, specific attributes
are automatically placed on each volume to distinguish
walls, rooms, doors and windows. The user also has the
possibility to add his own attributes to faces and volumes
such as materials (photometric attributes, concrete, plas-
ter, etc.) or semantic information (offices, libraries, wash-
rooms, etc.).

Higher-level operations are also used to group two ad-
jacent rooms sharing at least one portal (multi-partition
operations). Practically, this operation implies to scan all
the darts belonging to the corresponding rooms and the in
between portals.

For anticipating the rendering process, a graph express-
ing adjacency relationships between rooms is automati-
cally created with the help of multipartitions.

8

a. Building shape. b. Main walls shape deduced from(a).

c. Extrusion of polygon(a) to produce building outdoor. d. Extrusion of(b) to generate floors.

e. Edition of a floor to arrange walls. f. disposition of doorsand windows.

g. Bounding boxes to represent furniture. h. Samples of furniture.

Figure 12: Construction steps of a simple building.

9

3. Room furnishing
Each room can be enriched with furniture (4th hierarchy
level). We can use either topological objects described by
a g-map modeler or objects defined by a list of polygons.
In this level, furniture is represented by a bounding box
volume. The last hierarchy level contains object details
(Movie 04in [Mod]).

Practically, due to the high number of polygons, object
geometry and topology are stored on the disk (except for
the currently edited room). Bounding boxes contain an
attribute indicating the object file name and the transla-
tions/rotations applied. The same file can be used several
times. This corresponds to clones of the same object. As
for floors, room furniture can be duplicated and used for
several locations in the building. Moreover, a mechanism
of furnishing scripts is also used to automatically add ob-
jects into a given room with slight random modifications.

Note that inserted objects are either defined by a G-map
with its geometry or described by a list of polygons. In this
latter case, object topology needs to be estimated. The ob-
ject is firstly revised so as to suppress degenerated trian-
gles and triangulate non-coplanar polygons;α involutions
are automatically retrieved from the resulting list of poly-
gons when possible.

4. Final building
When each room has been described, we can see entire
building by displaying all levels of the hierarchy, except
furniture (see bottom of Figures 13 and 17,Movie 05in
[Mod]).

5 Results

The following results correspond to scenes that have been
constructed with our modeler and used with various ren-
dering programs.

5.1 Buildings

The simplest scene contains 300K triangles and the most
complex one contains 1 billion triangles. Table 1 provides
disk space required by various scenes; note the difference
between raw and hierarchical models. The raw description
includes the complete list of triangles with photometric at-
tributes while the hierarchical representation uses cloned
pieces of furniture.

Building # Polygons # rooms Disk (compressed)
raw model hierarchy

L-Building 336.5K 27 3.55 MB 2.3 MB
Z-Building 1.074M 22 10.4 MB 1,51 MB
Octagon 5 250K 232 54.8 MB 6 MB
Tower_100 1.074 billion 17 800 8.5 GB 164 MB

Table 1: Four furnished buildings; disk space is given with
compression.

Figure 13 presents images of our buildings. Our mod-
eler interface with our biggest manually-modeled scene

Figure 13: Screenshots of three different buildings con-
structed with our modeler (with and without automatic
furnishing).

are illustrated in Figure 17. As shown in Figure 18, we
can also use our modeler for producing various and com-
plex shapes such as the Chartres Cathedral.

Finally, we have created a building made up with one
billion triangles spread out in 17 800 rooms and 101
floors. Furniture have been automatically placed. This
model has been used for a photon-mapping method dedi-
cated to large buildings [FMH05].

5.2 Rendering

For complex scenes, it remains difficult to interactively
display millions polygons even with powerful graph-
ics hardware. The scenes produced with our modeler
have been used for several rendering systems, includ-
ing OpenGL based visualization, ray-tracing and photon-
mapping. The topological information we propose is used

10

With Topology Brute Force
PC PI PRT T PI PRT T

L-Shaped building
(1) 9” 1” 1” 11” 1’18” 6” 1’24”
(2) 9” 2” 2” 13” 1’31” 7” 1’38”
Octagon building
(3) 10” 1” 2” 13” Impossible to load
(4) 12” 4” 2” 18” with 512 MB RAM

Table 2: Computing time with and without preprocessing
for a 400 x 300 pixel image of two buildings (L-shaped
with 300K polygons and octagon with 5 millions trian-
gles) without taking lighting into account.PCcorresponds
to the pre-computation using the topological structure.PI
represents the time needed by POV-Ray for reading the
scene and constructing the accelerated data structure while
PRT is the time needed for computing one image.T is the
total computing time in both cases.

for:

• reducing the number of geometric primitives dis-
played during the modeling process;

• estimating straightforward view-dependent visibility
information for POV-Ray rendering [Pov] (Figure
14);

• generating cells and portals data structure [TFFH94,
MBM98] and computing out-of-core global illumi-
nation for very large buildings [FMH05];

• providing the representation necessary for lower fre-
quency electro-magnetic wave propagation simula-
tion [VPE04].

During the modeling process, the building is displayed
with the help of OpenGL library. Furniture is not stored
in memory unless the user explicitly selects one object for
examining its details. As a result, the 5 millions poly-
gons building only requires at worst 85 MB of memory
(corresponding to the graphic user interface plus our data
structure). Displaying the whole scene would require at
least one gigabyte memory.

For lighting simulation and rendering, the building is
firstly saved as a set of files enriched with an adjacency
graph. Each file corresponds to a single room description
with furniture. Portals are defined by transparent polygons
indicating the corresponding adjacent rooms. Note that
polygons corresponding to room structure (such as floor,
ceiling and wallpaper) are specifically labeled.

For computing one image with POV-Ray, a precompu-
tation process provides the list of rooms potentially visible
from the viewpoint. To do this, our ray-casting procedure
uses only room volumes and portals without furniture and
walls. Table 2 provides computing time for two scenes.
These results have been obtained with a PC 1 GHz with
512 MB RAM. As seen in this Table some of these view-
points could not be rendered brute force with POV-Ray
because of the high number of polygons.

Figure 14: Images of our L-shaped building rendered with
POV-Ray.

Our modeler has also been used to generate a 1 billion
triangles building (Figure 13, bottom) for lighting simula-
tion computations with 60K light sources [FMH05]. The
cells and portals data structure allows memory-coherent
photon-tracing and ray-tracing. Irradiance information
(photon-maps) is stored independently in each room. With
our method, only 300 MB of memory have been neces-
sary for computing lighting simulation, though the whole
database requires 110 GB on the disk (8.5 GB com-
pressed). As a result, 1.6 billion photons have been prop-
agated in the scene and more than 400 GB are necessary
for storing all the information on the disk. After lighting
simulation (computing time is given in Table 3), an image
can be generated in a few minutes (Figure 15).

Building # Photons Phot-prop. Phot-Map
(millions) time time

L-Shape 4.6 1’19" 21"
Z-Building 3 33" 1"
Octagon 30 4’04" 2’14"
Tower 1655 10h11’ 3h56

Table 3: Computing time for several buildings.# Photons
corresponds to the number of photons impacts stored in
the scene.Phot-prop timecorresponds to the time needed
for propagating photons andPhot-map timecorrespond to
the time needed to construct all the photon-maps.

Finally, the model proposed in this paper has been used
to generate adequate data structure for a wave propagation
simulation algorithm [VPE04] without furniture (Figure
16). In this case, walls volumes and materials are used

11

Figure 15: Images of our buildings computed with our
photon-mapping system.

rather than room volumes.

6 Conclusion and Future Works

This paper presents a topologically-based model dedi-
cated to large buildings. Our data structure allows both
modeling and rendering complex indoor scenes. It extends
the G-map topological model with multi-partitions and
hierarchies taking into account memory and time issues.
Model robustness have been shown through several appli-
cations. First, we provide a set of operations dedicated to
large buildings, included in a modeler prototype. Second,
the scenes produced, enriched with topological informa-
tion, are used for ray-tracing, photon-mapping and wave
propagation simulations at 1 GHz. Results are encourag-
ing and show that topological information provided by the
modeling process can be advantageously used by render-
ing systems. Presently, the topological information used
during the rendering process concerns essentially high-
level information such as volumes adjacency, rooms and
portals. In the future, we aim at using lower-level descrip-
tions for taking advantage of incidence and adjacency in-
formation with faces and edges.

References

[Air90] J. M. Airey. Increasing Update Rates in
the Building Walkthrough System with Auto-
matic Model-Space Subdivision and Poten-
tially Visible Set Calculation. PhD thesis,

Figure 16: Simulation of indoor radio propagation at
1GHz in SP2MI building.

University of north Carolina at Chapel Hill,
1990.

[ARB90] John M. Airey, John H. Rohlf, and Freder-
ick P. Brooks. Towards image realism with
interactive update rates in complex virtual
building environments.Computer Graphics
(1990 Symposium on Interactive 3D Graph-
ics), 24(2):41–50, May 1990.

[Bau75] Bruce Baumgart. A polyhedron represen-
tation for computer vision. InAFIPS Nat.
Conf. Proc. 44, AFIPS Press, Alrington, Va.,
pages 589–596, 1975.

[BK03] Luc Brun and Walter Kropatsch. Contrac-
tion kernels and combinatorial maps.Pat-
tern Recognition Letters, 24(8):1051–1057,
2003.

[Bri93] Erik Brisson. Representing geometric struc-
tures in d dimensions : topology and or-
der. Discrete & Computational Geometry,
9:387–426, 1993.

[CDM+94] Paolo Cignoni, Leila De Floriani, Clau-
dio Montani, Enrico Puppo, and Roberto
Scopigno. Multiresolution modeling and vi-
sualization of volume data based on simpli-
cial complexes.Symposium on Volume Visu-
alization, pages 19–26, 1994.

[DF88] Leila De Floriani and Bianca Falcidieno. A
hierarchical boundary model for solid ob-
ject representation.ACM Transactions on
Graphics, 7(1):42–60, 1988.

[DL03] G. Damiand and P. Lienhardt. Removal and
contraction for n-dimensional generalized

12

maps. InDiscrete Geometry for Computer
Imagery, number 2886 in Lecture Notes in
Computer Science, pages 408–419, Naples,
Italy, november 2003.

[DPM97] Leila De Floriani, Enrico Puppo, and Paola
Magillo. A formal approach to multiresolu-
tion hypersurface modeling. In W. StraSSer,
R. Klein, and R. Rau, editors. Geometric
Modeling : Theory and Practice. Springer
Verlag., 1997.

[FB00] Jean Françon and Yves Bertrand. Topolog-
ical 3d-manifolds: a statistical study of the
cells. Theor. Comput. Sci., 234(1-2):233–
254, 2000.

[FMH05] David Fradin, Daniel Meneveaux, and Se-
bastien Horna. Out of core photon-mapping
for large buildings. Eurographics Sym-
posium on Rendering, Konstanz, Germany,
2005.

[Fra04] David Fradin. Modélisation et simulation
d’éclairage à base topologique : appli-
cation aux environnements architecturaux
complexes. PhD thesis, University of
Poitiers, France, Décembre 2004.

[FTSK96] Thomas Funkhouser, Seth Teller, Carlo
Séquin, and Delnaz Khorramabadi. The
uc berkeley system for interactive visualiza-
tion of large architectural models.Presence,
5(1):13–44, 1996.

[GS85] Lionidas Guibas and Jorge Stolfi. Primi-
tives for the manipulation of general subdi-
visions and the computation of voronoï dia-
grams.Transactions on Graphics, 4(2):131–
139, 1985.

[JM92] Jean-Michel Jolion and Annick Montanvert.
The adaptive pyramid: A framework for
2d image analysis.CVGIP, 55(3):339–348,
May 1992.

[LCCO03] Alon Lerner, Yiorgos Chrysanthou, and
Daniel Cohen-Or. Breaking the walls: Scene
partitioning and portal creation. InPacific
Conference on Computer Graphics and Ap-
plications, pages 303–312. IEEE Computer
Society, 2003.

[Lie91] Pascal Lienhardt. Topological models for
boundary representation: a comparison with
n-dimensional generalized maps.Computer-
Aided Design, 23(1):59–82, 1991.

[Lie94] Pascal Lienhardt. N-dimensional gen-
eralized combinatorial maps and cellular
quasi-manifolds. International Journal of
Computational Geometry & Applications,
4(3):275–324, 1994.

[MBM98] Daniel Meneveaux, Kadi Bouatouch, and
Eric Maisel. Memory management schemes
for radiosity computation in complex envi-
ronments. InComputer Graphics Interna-
tional, Hannover, pages 706–714, 1998.

[MBMD98] D. Meneveaux, K. Bouatouch, E. Maisel,
and R. Delmont. A new partitioning method
for architectural environments. Journal
of Visualization and Computer Animation,
9(4):195–213, October–December 1998.

[Mod] Large building modeler, sic laboratory,
http://www.sic.sp2mi.univ-poitiers.fr/mr-
archi/cgf05.html.

[Mok] Moka, sic laboratory modeler
project, http://www.sic.sp2mi.univ-
poitiers.fr/moka/.

[MPB03] Jean-Eudes Marvie, Julien Perret, and Kadi
Bouatouch. Remote interactive walkthrough
of city models. Pacific Conference on
Computer Graphics and Applications, pages
389–393, Octobre 2003.

[PFP95] Valerio Pascucci, Vincenzo Ferrucci, and
Alberto Paoluzzi. Dimension-independent
convex-cell based hierarchical polyhedral
complex : Representation scheme and im-
plementation issues. InSMA ’95: Proceed-
ings of the Third Symposium on Solid Model-
ing and Applications, pages 163–174, 1995.

[Pov] PovRay. Persistence of vision raytracer
pty. ltd. the terms "pov-ray" and "persis-
tence of vision ray-tracer" are trademarks of
the persistence of vision development team :
http://www.povray.org.

[RO89] Jarek Rossignac and Michael O’Connor.
SGC: A dimension-independent model for
pointsets with internal structures and in-
complete boundaries. In Eds. M. Wosny,
J. Turner, K. Preiss, and North-Holland, edi-
tors,Geometric Modeling for Product Engi-
neering, Proceedings of the IFIP Workshop
on CAD/CAM,, pages 145–180, 1989.

[Tel92] Seth Jared Teller.Visibility Computations
in Density Occluded Polyhedral Environ-
ments. PhD thesis, University of California
at Berkeley, 1992.

[TFFH94] Seth Teller, Celeste Fowler, Thomas
Funkhouser, and Pat Hanrahan. Partitioning
and ordering large radiosity computations.
In Computer Graphics Proceedings, Annual
Conference Series, pages 443–450, 1994.

[TH93] Seth Teller and Pat Hanrahan. Global vis-
ibility algorithms for illumination computa-
tions. In Computer Graphics Proceedings,

13

Annual Conference Series, pages 239–246,
1993.

[VPE04] Rodolphe Vauzelle, Yannis Pousset, and
Frédéric Escarieu. A sensitivity study for an
indoor channel simulation.Annals of Tele-
com, 59(5-6):655–672, 2004.

[Wei86] Kevin Weiler. The radial-edge data struc-
ture: a topological representation for non-
manifold geometry boundary modeling. In
Proc. IFIP WG 5.2 Working Conference,
Rensselaerville, USA, 1986.

[Wei88] Kevin Weiler. Boundary graph operators
for non-manifold geometric modeling rep-
resentations. InGeometric Modeling for
CAD Applications (First IFIP WG5.2 Work-
ing Conference Rensselaerville, N.Y., 12-14
May 1986), pages 37–66, North-Holland,
1988.

[WWSR03] Peter Wonka, Michael Wimmer, François
Sillion, and William Ribarsky. Instant archi-
tecture.ACM Trans. Graph., 22(3):669–677,
2003.

14

A 3-G-map Kernel details

Our modeler has been elaborated upon our laboratory
topological kernel [Mok]. The latter describes a set of
operations for handling generalized maps of dimension 3.

A.1 3-G-map Data Structure

3-G-maps contain a set of darts (basic elements) associ-
ated with involutionsα0, α1, α2 andα3. Marks are used
for modification operations or coverages and the G-map
class also indicates how many and which marks are cur-
rently used. For handling embeddings (information about
geometry, semantic, etc.), a list of attributes is stored in
the dart class. An attribute is a triple composed of a type,
the information to store and the corresponding orbit (ver-
tex orbit for coordinates, face orbit for photometry, etc.).
A boolean table also indicates for which orbits these at-
tributes are defined. This table is used for avoiding to
check the whole attributes list if it is not necessary.

// A 3-G-map
class Gmap
{
private :

// list of darts
Dart * darts;

// Reserved marks
boolean marks[];
int nbUsedMarks;

public :
...

}

// A dart of 3-G-map
class Dart
{
private :

// alpha involutions
CDart * alpha[4];

// boolean marks
boolean marks[];

// Which orbits have attributes
boolean embedded_orbits[16];
// corresponding attributes
Attribute * attributes;

public :
...

}

A.2 Cells Inclusion

To deal with inclusion, we propose a set of methods in the
G-map class defining attributes in some darts to specify
inclusion. According to the attribute orbit (face or vol-
ume orbit), it indicates if a face or a volume is included

in another one. We have developed a series of operations:
insertion, removal and query for faces inclusion such as
- addInsideFace(dart container, dart content),
- removeFirstInsideFace(dart container),
- removeAllInsideFaces(dart container, dart content),
andgetInsideFaces(dart container) for faces with their
equivalent for volumes inclusion.

Two marks in G-maps are kept for inclusion:
f aceInsideMarkis used to indicate if a face is located
in another one (by marking the dart carrying the face),
volumeInsideMarkis the equivalent for volume inclusion.

B Our Partition and Hierarchy
Representation

B.1 Partitions management

Some information for handling groups have been added to
the initial kernel classes. A unique boolean is sufficient to
describe a set of groups corresponding to our definition.
With a byte we can thus create 8 different partitions for
each involutionα1, α2 andα3.

Marking α involutions creates new orbits (group or-
bits). These orbits can be used to store particular attributes
to associate semantic informations with groups. Extension
of attributes are namedPAttribute.

// A dart with partition handling
class PDart : public Dart
{
private :

// marks for groups
byte alpha_g[3];

// attributes of groups
PAttribute * grouped_attributes;

public :
...

}

// A 3-G-map with partition handling
class PGmap : public Gmap
{
private :

// which partition are reserved
boolean used_partitions[8];

public :
...

}

MethodsgetAttribute(dart d, gorbit orb,attribType type),
addAttribute(dart d, gorbit orb, attribute Att) and
removeAttribute(dart d, gorbit orb, attribType type)
are used to manipulate group attributes. The main dif-
ference between standard attributes and group attributes

15

is the orbit: the typegorbit corresponds to group orbits.
Note that all the attributes of a group are carried by a
unique dart in the group.

groupAttributes(dart d1, dart d2, gorbit orb) checks
and merges the attribute lists ofd1 andd2 for a given
group orbit. Attributes of a same group are required to
be of different types; if two attributes of same type are
found, only one of them is kept (the one ofd1).

duplicateAttributes(dart d1, dart d2, gorbit orb) is
the opposite operation. When a group is subdivided, event
detected by the methodisInSameGroupedOrbit, all the
attributes of the original group are copied in the two new
groups (call toduplicateAttributes).

B.2 Hierarchy management

Each hierarchy level is represented by one G-map. Since
we want to create partitions in this G-map, we define each
level as aPGmapwith hierarchy information: parent and
child maps. The same principle is applied to the dart class.

// A dart in the hierarchy
class HDart : public PDart
{
private :

// eta link
HDart * parent, * child;

public :
...

}

// A 3-G-map in the hierarchy
class HGmap : public PGmap
{
private :

// hierarchy
HGmap * parentMap, * childMap;

public :
...

}

Hierarchical operations need sometimes to mark darts
in several hierarchy levels. This is why hierarchical marks
have been defined. Requesting a hierarchical mark con-
sists in requesting it in all the concerned G-maps. A
unique identifier is given to all the marks. Such a query is
first applied to the root G-map of the hierarchy and prop-
agated through the whole hierarchy.

Method reserveHMark(int i) requests a mark.
HMarkIsReserved(int i) indicates if mark i is used.
f reeHMark(int i) releases marki; all the darts have to be
unmarked.getHMark(int i) returns the mark number in
the current G-map corresponding to the hierarchical mark
i.

Three hierarchical marks are reserved for the modeler:
selectionMarkfor selections in different levels of the hier-
archy,orientationMarkto control orientation in every G-
map (for deducing normals of faces) andworkMarkused

by hierarchical operations to mark darts for defining the
working area of local operations.

B.3 Selection operations

Selection operations have been developed for providing
the local work areas.setCurrentMap(int level) defines
the level of hierarchy on which the user works (edition or
visualization). select(Dart d, gorbit orb) selects all the
darts in the orbitorb of dart d in the current G-map. It
consists in marking a set of darts (for example a volume
or a face) selected by the user for an operation. The dart
d and the orbitorb are also stored in a listselectionListto
accelerate accesses.unselect(Dart d, gorbit orb) is the
opposite operation.getSelections() returns all the selec-
tions: the list of couples(dart,orbit).

Some selection methods require to check the cells
semantic before validating the process. For in-
stance, setRoomSelection(), setWallSelection() and
setOpeningSelection() restrict the selections to volumes
corresponding to rooms, walls or openings. Semantic in-
formation is automatically managed by the modeler.

B.4 Modification operations

In this section, we propose to explain a particular oper-
ation for illustrating propagation of modifications in the
hierarchy. We choose to detail opening insertions shown
on Figure 11.

When the user clicks for indicating the opening loca-
tion, a first traversal identifies the closest dartd within the
current hierarchy/floor level. This dart belongs to a face
corresponding to a wallpaper, an opening or a wall. The
wall volume selected by the user is located on the edge
orbit of d. Note that the corresponding volume can be a
retaining wall defined in the upper hierarchy level.

If the wall belongs to the current floor (inner wall, Fig-
ure 11.b), the opening is inserted between two rooms.
First, the algorithm checks opening validity: (i) the open-
ing must be smaller than the wall, (ii) its position must
be completely inside the wall, and (iii) it does not cross
another portal. The position is automatically corrected by
the program when (ii) or (iii) is not verified. The user can
move the mouse to precisely place the opening on the se-
lected wall.

Once the user confirms the opening position, the scene
is actually updated. Opening insertion implies the creation
of new cells: opening volume, transparency faces between
portal and adjacent rooms and obviously new edges and
vertices. These insertions are applied on the current floor
level and sometimes on the lower level if the correspond-
ing rooms have been previously detailed. Note that all the
room volumes are grouped together in the floor hierarchy
level.

If the opening is inserted in a retaining wall (Figure
11.c), the new volume is added in the upper hierarchy level
(second level) and one of the transparent faces is created
on the facade. Therefore, the corresponding parent darts
are found using the methodf indParent(). On the facade,

16

the opening insertion method uses face inclusion (method
addInsideFace) instead of cells insertion for simplifying
the hierarchy root description.

Finally, in both cases, attributes concerning openings
are defined: semantic on the opening volume and trans-
parency on the two faces linked with adjacent rooms. The
wall parts around the opening are grouped withαg

3 for in-
dicating that the subdivision is arbitrary (this is an unique
wall). For the same reason, the corresponding faces in
rooms are also grouped withαg

2.

B.5 Photometry and radiometry

Faces and volumes can be selected and associated with
radiometry and photometry (BRDF or bidirectional re-
flectance distribution function), according to the following
methods. setMaterialOnSelectedVolumes(material m)
provides the selected volumes with the given material
(concrete, plaster, wood, etc), using theselectionList.
setBrd f ToSelectedFaces(brd f f r) applies a BRDF to
all selected faces.setBrd f ToWallpaper(brd f f r) as-
sociates a BRDF with all faces corresponding to walls
of selected rooms. setBrd f ToGround(brd f f r) and
setBrd f ToCeiling(brd f f r) do the same for ground and
ceiling of rooms.

This information can be used during simulations or vi-
sualization. We define methods for exporting the model
into different file formats.

exportToPOV(Dart d, orbit orb, string f ilename)
creates a POV readable file for each room and opening
in a given orbit (for PovRay ray tracer).

exportToNFF(Dart d, orbit orb, string f ilename)
writes a part of the scene in NFF format (for visualiza-
tion) onto the disk.

exportToMSDL(Dart d, orbit orb, string f ilename)
exports of a part of the scene in MSDL format (used in
our laboratory for wave propagation).

exportToAG(Dart d, orbit orb, string f ilename) saves
all the rooms of a given orbit (in a format close to NFF
with topological information), connected by an adjacency
graph for ray and photon propagation.

17

Figure 17: Images of our modeler : (top) topological view of the SP2MI building, (bottom) an entire furnished floor of
the octagon building.

18

a.

b. c.

Figure 18: During building construction, a plan can be inserted in background image to help the design: a. the user has
loaded a cathedral plan. - b. & c. the final model of this cathedral.

19

