
Fast and Exact Direct Illumination

F. Mora
∗

L. Aveneau
†

SIC - University of Poitiers
France

Abstract

Rendering high quality soft shadows from area light sources
is necessary to increase the level of realism. Quality soft
shadows are closely related to the visibility computation.
An accurate visibility information will improve the shadows
realism. However, this remains a challenging problem since
even small visibility approximations can lead to unaccept-
able errors in a picture. We propose a new approach to this
problem, based on an exact visibility pre-computation, done
in the Plücker space. It takes advantage of this first step to
provide an exact from-point visibility query algorithm. We
propose several results in a ray tracing application, where
the direct illumination at any given point is provided with a
fast computation, and with a high degree of quality.

Keywords: exact visibility, soft shadows, direct illumina-
tion

1 Introduction

In realistic rendering, soft shadows due to direct illumination
are of great importance for the image quality. In particular,
the shadows cast by an area light source represent a chal-
lenging problem. Many works have been done to compute
them efficiently.

In interactive rendering, there are two general algorithms
for computing soft shadows : the shadow map and the
shadow volume, which allow to compute the penumbra from
a linear or area light source [9] [1]. Even if these techniques
are fast, and can be implemented in a GPU, they can present
some drawbacks when it comes to soft shadows estimation.

In realistic rendering, the classical technique consists in
computing the shadows due to the direct illumination from
area light sources, using a sampling approach [13]. Of course,
this may introduce noise in the results, and imply high com-
putation times. Recently, Szécsi proposed a solution based
on correlated sampling [15], to replace the importance sam-
pling when the light source is fully visible, allowing to reduce
the image noise.

Since realistic soft shadows depend on the visibility be-
tween geometric primitives, previous works attempt to take
advantage of an accurate visibility information to enhance
the rendering quality. Durand [6, 8] built a visibility skeleton
encoding the visibility events in a scene. He uses this infor-
mation to improve rendering in a radiosity context. However
this construction has difficulties to handle visual events due
to degenerated geometric configurations. A robust version
of the visibility skeleton was developed by Duguet [5]. This

∗e-mail: mora@sic.univ-poitiers.fr
†e-mail: aveneau@sic.univ-poitiers.fr

new algorithm introduces an epsilon-imprecision and was ap-
plied to compute accurate shadows with point or directional
light source.

In this paper, we present a method that has a great poten-
tial to enhance high quality rendering. Based on a particular
solution to the exact polygon-to-polygon visibility problem
[10], we derive an algorithm to extract an exact point-to-
polygon visibility representation. As a first application, we
apply our method to compute the direct illumination in a
ray tracing rendering tool. The first results demonstrate
that our method allows to render scene fast, while soft shad-
ows remain exact.

In the second section of this paper, we recall the funda-
mentals allowing to compute an exact visibility information.
The third section presents the structure we use to encode the
visibility data between two polygons. Section four explains
how to take advantage of this information to efficiently ex-
tract a from-point visibility information. At last, the section
five shows how this can be applied to a ray tracing rendering
tool and proposes some results which are discussed.

2 Preliminaries

An important part of the work presented in this paper relies
on the ability to compute an exact description of the visi-
bility between two polygons. The four dimensional nature
of the visibility in 3D environments has prevented for a long
time from leading to tractable solutions. Nirenstein [12] and
Bittner [2] have recently published the two first solutions.
They both solve the problem by using five dimensional CSG
operations in the Plücker space. In this section, we recall the
fundamentals on the Plücker space and the main principles
to compute exact visibility between polygons.

2.1 The Plücker space

The Plücker space [14] is a five dimensional projective space
P

5. It provides an elegant parametrisation for dealing with
directed lines in R

3. Each line l passing through the point
(px, py, pz) and next through (qx, qy, qz) is defined in P

5 by
πl = (π0, π1, π2, π3, π4, π5), with :

π0 = qx − px π3 = qzpy − qypz

π1 = qy − py π4 = qxpz − qzpx

π2 = qz − pz π3 = qypx − qxpy

Notice that (π0, π1, π2) is the direction of l while (π3, π4, π5)
encodes its location.

Next, let us consider the dual mapping within P
5 : each

π ∈ P
5 can be associated to a dual hyperplane hπ defined

by :

hπ = {x ∈ P
5 | π3x0 + π4x1 + π5x2

+π0x3 + π1x4 + π2x5 = 0}

Given two lines l1 and l2 and their Plücker mapping πl1

and πl2 , a crucial property is : l1 and l2 are incident if and



Plcker hypersurface

hπl
(x) = 0

πl1

πl2

πl3

�

l1l

hπl
(πl1 ) > 0

l2l

hπl
(πl2 ) = 0

�

l3l

hπl
(πl3 ) < 0

Figure 1: Line orientation in the Plücker space. There are three
different cases for an oriented line to pass another : l1 passes on
the left of l0, l2 is incident on l0 and l3 passes l0 on the right. The
Plücker mapping of l1, l2, l3 will respectively lie above, on and below
the dual hyperplane of l0.

only if πl1 lies on the dual hyperplane of πl2 (and vice versa).
If hπl1

(πl2) 6= 0, the sign of hπl1
(πl2) determines the relative

orientation of l1 and l2 as illustrated on figure 1.
At last, each line in R

3 maps to a point in P
5 but each

point in P
5 does not map to a line in R

3. The mapping of
all real lines in P

5 forms a four-dimensional quadric surface
called the Plücker hypersurface.

2.2 Exact From Polygon Visibility Principle

Previous definitions are useful to characterise the set of lines
stabbing convex polygons. In the Plücker space, these lines
form a connected set of points on the hypersurface. For
computational convenience, it is easier to deal with a poly-
hedral representation of this subset by using the dual hy-
perplane mapping of the polygon edges. The intersection
of this polyhedral structure with the Plücker hypersurface
gives exactly the set of lines stabbing each polygons. Such
an approach was already used by Teller [16] to compute the
anti-penumbra of an area light source through a sequence of
polygons. Figure 2 illustrates a two triangles example, the

e1

e2

e3

e4

e5
e6

l

hπe6
(πl) ≥ 0hπe5

(πl) ≥ 0hπe4
(πl) ≥ 0

hπe3
(πl) ≥ 0hπe2

(πl) ≥ 0hπe1
(πl) ≥ 0

Figure 2: Lines stabbing two polygons : The Plücker mapping of the
polygons edges induces the hyperplane representation of a polytope.
Its intersection with the Plücker hypersurface is the set of all lines
stabbing the two polygons.

simplest case in a context of polygon to polygon visibility.
More generally, if A and B are two polygons with n and m
edges e1, ..., en+m consistently oriented, all the lines l passing

through A then B satisfy :

∀ i ∈ [1..n + m], hπei
(πl) ≥ 0

This system of inequations is the hyperplane representation
of an unbounded polyhedron in the Plücker space. Addi-
tional constraints are added to obtain a closed polyhedron :
a polytope. The polytope representation allows to limit com-
putations to the zone of the Plücker hypersurface.

Let PAB be the polytope that represents the set of lines
stabbing A and B. Figure 3 gives a 2D illustration of the
process that removes from PAB the set of lines blocked by
an occluder. This has to be applied to each occluder. The
remaining parts of PAB intersecting the hypersurface are
exactly the set of lines that stabs A and B without stabbing
any occluders. If such a part does not remain, A and B are
not visible.

P
lc

k
e
r

S
p
a
c
e

R
3

(a)

(b) (c)

(d) (e)

A

B
O

o1

o2

o3

hπo1

hπo2

⊕

⊕

⊕

⊕

⊕

⊕

Figure 3: (a) An occluder O blocks some visibilities between two
polygons A and B. (b) The Plücker representation of lines stabbing
A and B and lines stabbing O. (c) (d) : To remove the subset of
blocked lines, PAB is successively split in sub-polytopes using the
hyperplanes associated to the occluder edges. (e) The sub-polytope
corresponding to blocked lines is removed.

CSG computation in the Plücker space allows to encode
all visibilities, whereas a visibility skeleton provides only vi-
sual events (i.e lines that are incident to polygons vertices
or polygons edges). To make a geometric comparison, the
visual events are related to the intersections of the polytopes
boundaries with the Plücker hypersurface, whereas the full
visibility information is provided by the whole polytope in-
tersection with the hypersurface.

Both Nirenstein algorithm and Bittner algorithm rely on
the previous principles. However, they do not provide the
same information. On the one hand, Bittner algorithm
builds a hierarchical occlusion tree that provides a structured
visibility information for a source polygon facing a scene.
Bittner occlusion tree [2] is a 5D BSP tree that classifies all
the rays emerging from the source polygon. A leaf represents
a set of unoccluded or occluded rays. In the latter case, the



corresponding occluder is associated to the leaf. To provide
a depth information, the polygons are processed in a front-
to-back order. On the other hand, Nirenstein algorithm is
computationally suited for polygon-to-polygon query [11].
However, its purpose is to query if at least one visibility ex-
ists between the polygons. The visibility data is maintained
as a non-organised set of polytopes, and dropped as soon as
the visibility or invisibility is determined.

To render exact soft shadows, our approach requires an
exact visibility description between two polygons. As a con-
sequence, we use an algorithm similar to the Nirenstein’s
one, but modified to provide a structured visibility informa-
tion like the Bittner’s one.

3 From-polygon visibility query

This section presents our approach to compute an exact rep-
resentation of the visibility between two polygons. Our mo-
tivation is to minimize the number of polytopes that describe
the visibility. The first reason is to reduce the storage cost
of the visibility data. The second reason is to increase the
information coherence and to allow a more efficient use after
its computation. This will be detailed in the next section.

3.1 The history tree

Given two polygons, our approach builds a binary, tree called
a “history tree” since it can be understood as the history of
the successive splitting operations. Each inner node stores
an oriented edge that was used to create a splitting hyper-
plane in the Plücker space. Each leaf represents either a set
of visibilities between the two queried polygons, or a set of
blocked lines. We now detail the history tree construction
and refer to the raw algorithm 1.

o1

o2 V

I V

Figure 4: A simple history tree example : This is the history tree
corresponding to the figure 3 example. o1 and o2 are the occluder
edges mapped to a splitting hyperplane in the Plücker space.

During the process, a leaf is marked as visible, invisible,
undefined or rejected. In the latter case, this means that
the associated polytope can not be affected anymore by the
current occluder removal. The algorithm starts with a vis-
ible root node associated to the initial polytope that rep-
resents all the lines stabbing the two queried polygons (line
25). Next, each potential occluder is removed using the same
process : each occluder edge is mapped to a hyperplane in
the Plücker space (line 28). If a hyperplane splits a polytope
associated to a leaf marked visible or undefined (lines 29,30),
this one becomes an inner node that stores the oriented edge
mapped to the hyperplane. Left and right children are added
and respectively marked undefined and rejected. They are
associated with the negative and positive parts of the poly-
tope that was split (line 31). After each occluder removal,
the undefined leaves can be marked invisible (line 35), while

the rejected leaves can be reset to visible (line 36). The algo-
rithm ends with the last occluder removal. Figure 4 shows
the history tree that would be produced with the figure 3
example.

Contrary to an occlusion tree, a history tree does not pro-
vide a depth information. In our context, this is not neces-
sary, since we are only interested in unoccluded rays between
the two polygons.

function Init (Polygon B , L) return HTree1

Polytope polytope2

HTree res3

begin4

polytope ← newPolytope(B; L)5

res ← newHTree (polytope)6
setMark (res ; visible)7

return res8

end9

procedure SplitLeaf (HTree H ; Plucker hplane;10

Edge edge)
Polytope polytope+, polytope−11

begin12

polytope+ ← H.polytope ∩ hplane+13

polytope− ← H.polytope ∩ hplane−14
H.orientedEdge ← edge15

H.posTree ← newHTree (polytope+)16

H.negTree ← newHTree (polytope−)17

setMark (H.posTree, rejected)18
setMark (H.negTree, undefined)19

end20

function P2PQuery (Polygon B , L) return HTree21

HTree H22
Plucker hplane23

begin24
H ← Init (B , L)25

foreach occluders O between Band L do26
foreach edge of O do27

hplane← map2Plucker (edge)28

foreach leaf l of H marked as visible or29
undefined do

if hplane ∩ l.polytope 6= ∅ then30
SplitLeaf(l, hplane, edge)31

end32

end33

end34

Mark all undefined leaves of H as invisible35
Mark all rejected leaves of H as visible36

end37
return H38

end39

Algorithm 1: Pseudocode for building the history tree (P2PQuery)
associated to two polygons B and L. Notice this is a raw algorithm.

3.2 Visibility data improvement

The history tree provides some optimisations facilities to
minimize and improve the visibility information. Inner
nodes with both visible or both invisible children are re-
placed by one visible or invisible leaf. Moreover, all splitting
operations are not necessary. For example, a hyperplane can
split a polytope without affecting its intersection with the



plcker hypersurface. Such a split adds unnecessary infor-
mation in the history tree. As the history of the successive
splitting operations, the history tree can be easily restored
to its previous configuration. The algorithm 1 presents a
simplified pseudocode that does not take into account such
optimisations. They are detailed in [10] and help to restrict
the oriented edges stored in the tree to the ones having a
real impact on the visibility between the two polygons. This
is depicted by the figure 5.

e1

e2

e3

e4 e5

e1

e2 e4

e3 V e5 V

I V I V

(a) (b)

L

B

Figure 5: An improved history tree : The oriented edges stores in the
nodes are only those having an impact on the visibility between the
top polygon L and the bottom one B.

4 From-point visibility query

Given two polygons A and B and their associated history
tree, this section presents a simple algorithm to compute
efficiently the visible parts of A from any point on B (or
vice versa).

Obviously, the visibility from a point on one polygon is
a subset of the visibility data between the two polygons.
According to the same observation, the occluders edges that
define visual events from the point with the queried polygon,
are a subset of the occluders edges stored in the history tree.

As a consequence, our solution relies on the history tree
traversal to isolate the edges having an impact on the visibil-
ity between the point and the queried polygon, as depicted
by figure 6. The recursive algorithm 2 details the process. It
assumes that the history tree of two polygons B and L has
been computed (line 41) and that we want to extract the
visible parts of L from a point on B (line 42,43). It starts
from the root node using a copy of L. For each inner node
met (line 51), the 3D plane defined by the point and the ori-
ented edge stored in the node is computed (line 52). Then
the polygon is tested against this plane (line 54). If it lies
in the positive (line 55) or negative (line 57) half-space of
the plane, the algorithm continues respectively in the right
or left subtree. If it is split by the plane (line 59), the algo-
rithm continues in both subtrees with the two relevant parts
of the polygon. Fragments that reach a visible leaf (line 48)
are exactly the visible parts of the polygon from the point.
Those that reach an invisible leaf can not be seen from the
point.

We can notice that a from-point algorithm such as [3]
could be used to compute exactly the visible parts of a poly-
gon. However, a BSP tree has to be built for each query with
a complexity that depends on the occluders number between
the point and the polygon. In comparison, the same history
tree can be used for any point on one polygon. Moreover,
the complexity of a query is restricted to the nodes number

e1

e5

e1

e2 e4

e3 V e5 V

I V I V

L

O P

O R S

O R

(a) (b)

O

R S

. x

Figure 6: From-point visibility using the history tree : From the root
node, the queried polygon L is first split by the plane defined by
e1 and x. The same process continues in the both subtree with O

and P , the relevant fragments of L. The visibility of a fragment is
determined as it reaches a visible or an invisible leaf.

in the history tree, which depends on the visual complexity
between the two polygons. The test of the edges that do not
affect the two polygons visibility can be avoided.

Polygon B , L40
HTree H ← P2PQuery (B , L)41
Point P← a point on B42
Polygon Poly← Copy (L)43
Set VFragments← ∅44

procedure FPQuery (HTree H ; Polygon Poly)45
3DPlane orientedPlane46
begin47

if visibleLeaf (H ) then48

VFragments ← VFragments ∪ Poly49
else50

if innerNode (H ) then51
orientedPlane ← newPlane (P ,52

H.orientedEdge)53
switch Poly ∩ orientedPlane do54

case POSITIVE55

FPQuery (H.posTree, Poly)56
case NEGATIVE57

FPQuery (H.negTree, Poly)58
case SPLIT59

FPQuery (H.posTree, Poly+)60

FPQuery (H.negTree, Poly−)61

62

end63

end64

end65

end66

Algorithm 2: Using the history tree of two polygons B and L,
FPQuery algorithm compute the visible parts of L from a point on
B

This explains why it is worth minimizing the history tree
size and trying to compute a visibility information as coher-
ent as possible.

5 Rendering Exact Soft-Shadows

This section shows how to take advantage of the history
tree in order to render high quality soft shadows. First, we



Figure 7: Classical Ray-tracing image with the stairs scene.

explain our approach before presenting several results for
different scenes. Then, we propose a brief discussion on the
perspectives.

5.1 Application

The from-point visibility query is applied in a ray-tracing
software to compute the soft shadows due to direct illumi-
nation. This contribution can be written using the following
integral [13] :

L
r(~x, ω) =

Z

Se

L
e(~y, ω~y→~x).fr(ω~y→~x, ~x, ω).

v(~x, ~y).G(~x, ~y)d~y

where Se is the set of light source points, Le is the irradiance
emitted by ~y in the direction towards ~x, fr is the BRDF at
point ~x, v is the visibility function and G is the geometric
factor.

Since there is no analytic solution to this integral, it is
usually approximated using a Monte-Carlo approach, for in-
stance with importance sampling or coherent sampling [15].
This has two drawbacks : first, the visibility query is usually
done by a ray casting approach, leading to an over computa-
tion time ; secondly, for a complex visibility between the area
light source and the point ~x, a good evaluation of the light
illumination implies a high number of samples, increasing
again the computation time, even for a diffuse light source.

Our approach consists in replacing the visibility compu-
tation by a from-point visibility query. The visibility from
each area light source to each polygon of a given scene, are
precomputed and stored in a graph. We do not use any dis-
continuity meshes, only the raw polygons of the scene. As
our method does not depend on the view point, this is done
once in a pre-treatment step, and then stored into a file.

Each time the direct illumination needs to be computed
at point ~x, we use the visibility graph data for a from-point
visibility query. This gives a list of the area light source

Figure 8: The stairs scene computed with from-point visibility query.

fragments visible from ~x. Each fragment is sampled depend-
ing on the area light source BRDF, in order to give a precise
evaluation of the direct illumination contribution. Moreover,
for a diffuse area light source, we use a faster approach : we
compute the ratio between the area of the light source and
the sum of the visible light source fragments areas, and use
only one light source point set at the light source barycenter.

An important remark is that we never have to evaluate
the visibility factor v, since we only choose light samples in
visible fragments. This is the key point of the computation
time reduction factor presented in 5.2.

Notice that Durand also uses the visibility skeleton to
compute exact point-to-polygon form factors. However,
since only the visual events are encoded, only the polygons
vertices can be queried. In comparison, our point-to-polygon
query has no restriction.

5.2 Results

For comparison purpose, we use a ray-tracing software that
computes soft shadows with a stratified sampling strategy.
Each direct illumination contribution is computed with 128
random points on each area light sources. The software uses
a regular 3D grid to speed up the intersection tests.

Table 1: Computation time for the three test scenes, with a clas-
sical ray tracing (RT) and the from-point visibility query technique
(FPVQ) ; the column PC shows the pre computation time for the
visibility graph construction ; the column Size indicates the visibility
graph memory size. All the images are computed with 16 samples
per pixel.

Scene RT FPVQ PC Size
Stairs 26’ 09” 35” 6” 22Ko
Table 16’40” 27” 2’37” 230Ko
Grids 18’43” 30” 3” 33 Ko



Figure 9: Classical Ray-tracing image with the table scene.

We choose three different test scenes. In spite of their
small polygons number, they present various visibility con-
figurations. The first one (see figures 7 and 8) contains stairs
and is made of 244 triangles. It allows to emphasize the in-
terest of our technique, since even with 128 light source sam-
ples, the penumbra are not properly estimated in a classical
ray tracing image. The from-point visibility query gives ex-
act soft shadows, with a non negligible improvement of the
computation time, as shown on Table 1.

The second test scene is made of 1348 triangles, including
a table, four chairs and a detailed house plant. It allows to
observe the robustness of the visibility graph construction
(see figures 9 and 10). On the one hand, the reduction of
the computation time is once again clear. On the other hand,
the quality of both images is similar. This is due to the fact
that 128 light source samples are sufficient to compute the
soft shadows with a classical ray tracing approach.

The last test scene (see figures 11 and 12) is very sim-
ple (154 triangles), but emphasizes complex visibility events
because of the two grids. Using our method the rendering
produces a convincing image. On the contrary, the classi-
cal approach using 128 random points on area light sources
clearly does not give good results. Moreover, as with the
two previous scenes, we have a computation time reduction.

5.3 Discussion

Results demonstrate that our approach produces images
with high quality soft shadows. The scenes used present a
sufficient visibility complexity to test the correctness of our
approach. Nevertheless, it is clear that we have to develop
our work to handle scenes with higher polygon numbers.
This raised several questions about the scalability of our
method. The pre-computation step increases with the scene
size. It grows linearly with the polygons number and each
polygon-to-light query is related to the average visual com-
plexity between a polygon and an area light source. Since the
classical ray tracing complexity is sub-linear as the polygons

Figure 10: The table scene computed with from-point visibility query.

number increases, it turns out that the whole computation
time (i.e the sum of the FPQV and PC times) could be-
come more important with our technique than without it.
However we believe that important scenes can be efficiently
rendered before reaching this critical point. Moreover, inter-
esting ideas can be taken from the Nirenstein framework [11]
to speed up the pre-computation step. Unless a geometric
modification in the scene is performed, this preprocess step
only needs to be done once.

Another question is the storage cost of the visibility data.
The table 1 does not exhibit prohibitive storage costs. The
storage complexity of a history tree is related to the average
visibility complexity between two polygons. A node of such
a tree can be implemented using only 4 integers, the two
first ones for the edge vertices pointers inducing a visibility
event, and the two others for the children. Our results show
that the storage cost is not an important limitation.

A last question is about the point-to-polygon visibility
query efficiency. A high complexity between two polygons
could lead to a history tree with an important size. This
could slow down the point-to-polygon query. Even with com-
plex objects, the visibility complexity depends on the area
size of the queried polygon. Some solutions can solve this
problem. An obvious idea is to use a discontinuity meshing
algorithm. We plane to test this solution in the future. An-
other solution is given by Bittner. He uses shafts to balance
its occlusion tree according to the visibility complexity. The
same idea can be applied to bound the size of a history tree.

Nevertheless, the fact is that the soft shadows are greatly
enhanced by using our technique. These results are very
promising and show that an exact visibility satisfies a high
degree of quality. It can be useful in realistic rendering or to
provide reference images to valuate approximate solutions.
As a future work, we plane to include it in a Monte-Carlo
approach, since clearly we think that it will reduce the image
noise, allowing to decrease the computation time as for the
ray tracing.



Figure 12: The grids scene computed with from-point visibility query.

Figure 11: Classical Ray-tracing image with the grids scene.

6 Conclusions

This paper has shown the potential of exact visibility to
compute high quality shadows due to a direct illumination
from an area light source. We have described how an exact
polygon-to-polygon visibility is encoded in a history tree.

Next, we have presented a point-to-polygon visibility algo-
rithm that takes advantage of the history tree to compute
the visible parts of a polygon. The first results have demon-
strated that soft shadows can be exactly computed. In addi-
tion, the preprocessed visibility information helps to speed
up the rendering. In the future, we will continue to improve
our ray tracing solution. But, since the visibility computa-
tion is a common problem in all the rendering methods, we
also think of enhancing other techniques such as a Monte
Carlo approach.

References

[1] U. Assarsson and T. Akenine-Mller. Occlusion culling and
z-fail for soft shadow volume algorithms. The Visual Com-
puter, 20(8-9), November 2004.

[2] J. Bittner. Hierarchical Techniques for Visibility Compu-
tations. PhD thesis, Czech Technical University in Prague,
October 2002.

[3] J. Bittner, V. Havran, and P. Slav́ık. Hierarchical visibility
culling with occlusion trees. In Proceedings of Computer
Graphics International ’98 (CGI’98), pages 207–219. IEEE,
1998.

[4] George Drettakis and Eugene Fiume. A fast shadow algo-
rithm for area light sources using backprojection. In Com-
puter Graphics. ACM SIGGRAPH, July 1994. Proceedings
of Siggraph’94.

[5] F. Duguet and G. Drettakis. Robust epsilon visibility. In
Computer Graphics, July 2002. Proceedings of ACM Sig-
graph 2002.

[6] F. Durand. 3D Visibility: Analytical Study and Applications.
PhD thesis, Universite Joseph Fourier, Grenoble, France,
July 1999.

[7] Frédo Durand, George Drettakis, and Claude Puech. The vis-
ibility skeleton: a powerful and efficient multi-purpose global
visibility tool. Computer Graphics, 31(Annual Conference
Series):89–100, 1997.

[8] Frédo Durand, George Drettakis, and Claude Puech. Fast
and accurate hierarchical radiosity using global visibility.
ACM Transactions on Graphics, 18(2):128–170, 1999.

[9] W. Heidrich, Stefan Brabec, and H-P. Seidel. Soft shadow
maps for linear lights. In Proceedings of the Eurographics
Workshop on Rendering’00, 2004.

[10] F. Mora, L. Aveneau, and M. Mriaux. Coherent and exact
polygon-to-polygon visibility. In Proceedings of WSCG’05,
2005.

[11] S. Nirenstein. Fast and accurate visibility preprocessing. PhD
thesis, University of Cap Town, South Africa, October 2003.

[12] S. Nirenstein, E. Blake, and J. Gain. Exact from-region
visibility culling. In Proceedings of the 13th Eurographics
workshop on Rendering, pages 191–202. Eurographics Asso-
ciation, 2002.

[13] P. Shirley, C. Wang, and K. Zimmerman. Monte carlo tech-
niques for direct lighting calculations. ACM Transactions on
Graphics, 15(3):1–36, 1996.

[14] Sommerville. Analytical Geometry in Three Dimension.
Cambridge University Press, 1959.

[15] László Szécsi, Mateu Sbert, and László Szirmay-Kalos. Cor-
related and importance sampling in direct light source com-
putation and environment mapping. In Proceedings of Eu-
rographics’04, 2004.

[16] Seth J. Teller. Computing the antipenumbra of an area light
source. Computer Graphics, 26(2):139–148, 1992.


