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ABSTRACT

Global processing of diffraction phenomena by a half-plane was proposed by Aveneau and Mériaux, using
the Geometrical Theory of Diffraction. In this theory, diffraction rays are emitted by diffraction points
belonging to the half-plane edge (or dihedron edge). The solution given for finding these points being
numerical, it is difficult to implement and leads to low precision solutions with a slow algorithm. In
this paper we first propose a new geometric solution for finding the dihedron diffraction points, which
leads to an efficient analytic algorithm. Next we present an implementation of a Ray-Tracing software
for polygonal scenes with an automatic diffraction treatment. Since this implies diffraction by dihedra,
we present the dihedron data structure and the corresponding algorithm which solves two problems : the
existence of diffraction paths, and the impossibility for dihedra to share their edge. These elements lead
to an implementation of a Ray-Tracing software with first diffraction account for any polygonal scenes.
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1 INTRODUCTION

The quest for realism has always been a major preoc-
cupation among the image rendering community. To
achieve this goal, researchers have added physically
based effects, from reflection on perfect mirrors with
ray-tracing to glare effects [Spenc95].

All observable optic phenomena are described by
one or more physical theory. Thus realism in image
rendering can be achieved by including these theories
in computational models, if possible.

In this way multiple reflections on diffuse sur-
faces can be compared to thermal exchanges and
leads to radiosity computation [Goral84]. Polariza-
tion [Wolff90], birefringence [Tanne94] and interfer-
ences [Calle94] [Dias94] can be added to a ray-tracer
since the phenomena can be modelled by Geometri-

cal Theory of Optics. Caustics can be understood
like FERMAT’s principle effects [Mitch92] and leads
to numerical computations or Monte-Carlo methods
[Jense97]. Atomic scattering can be taken into ac-
count with phase functions and geometrical optics,
and is used in Monte-Carlo based processes [Blasi94]
[Perez97].

Like in global illumination, local rendering meth-
ods intensively use the concept of ray, i.e. geometri-
cal optic theory, for instance the COOK-TORRANCE’s
model [Cook81]. Simulation of the subsurface scatter-
ing leads to skin or leaf reflections [Hanra93]. Diffrac-
tion by a subsurface structure leads to a model based
on KIRCHHOFF’s law [He91].

Eye, eyelash, and eyebrow diffraction were also de-
scribed using a ray-tracer method and a filtering pro-
cess [Nakam90]. This method has been augmented



for lenticular halo, bloom and flare lines [Spenc95].

However, global diffraction models are usually con-
sidered as too complex for their use in image render-
ing, for a small benefit. Nevertheless, powerful light
sources imply visible diffraction phenomena (e.g. sun
through a shutter on a wall).

In this way, the Geometrical Theory of Diffraction
[Kelle62] was introduced in computer graphics and
leads to diffraction by a half-plane or a slit [Avene97].
Therefore this solution was limited to very simple ge-
ometries. The next step for a global treatment of
wave propagation effects is to allow diffraction by any
polygonal objects. Fortunately, the GTD describes
dihedron diffraction as an extension of the half-plane
diffraction.

In this paper we present an implementation of a
Ray-Tracing software which supports diffraction by
dihedron. First, we present a new solution for finding
optical paths with one edge diffraction point. This
analytical solution is more efficient and much simpler
to implement than the previous one [Avene97], which
involves numerical computations. Next we introduce
the dihedron data structure which allows us to deal
with the problem of optical path existence in a polyg-
onal geometry.

We finish with a discussion on the efficiency of our
solutions, and conclude with further works.

2 SINGLE DIFFRACTION BY A DI-
HEDRON

Global processing of diffraction by a half-plane was
introduced by L. AVENEAU and M. MERIAUX in
[Avene97], using the Geometrical Theory of Diffrac-
tion [Kelle62] [Kouyo74]. This particular theory ex-
tends the principle of Fermat [Born80] by introducing
diffraction points along light paths. These new points
are localized on geometric objects responsible for
diffraction phenomena. Each geometric shape needs
specific treatment. In [Avene97], half-plane diffrac-
tion and, by extension, dihedron diffraction, were in-
troduced. In these cases, because surface diffractions
are similar to surface reflections, only diffraction by
edges needs to be dealt with.

2.1 Geometric Theory of Diffraction

The theoretical basis of the Geometric Theory of
Diffraction is the extended Fermat’s principle, or
Fermat’s principle for edge diffraction : an edge-
diffracted ray from a point P to a point Q) is a curve
which has stationary optical length among all curves
from P to Q with one point on the edge. This principle
implies that diffracted rays, emitted from diffraction
points on an edge, are localized on a cone surface
with, as axis, the edge itself, and with an opening
angle § equal to the incident one (see figure 1).

If we know the radiance of the incident ray, the
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Fig. 1 Diffraction by a dihedron :
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radiances of the new rays can be deduced easily by use
of diffraction coefficients. We express the polarized
incident radiance with a coherence matrix [Wolff90]
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where K is a constant due to the quadratic receptor
(e.g. eye, camera), the angle brackets denotes val-
ues averaged over time, F, and F, are respectively
the parallel and the perpendicular components of the
electric field E', and starred superscript denotes the
complex conjugate. With these notations; the ra-
diance is equal to the coherence matrix trace. The
diffracted coherence matrix is then :

Jog - Dﬁ Jey - DDy
Jaip = 2
Jye - DyDr Jyy - D7
where D) and D) are respectively the parallel and
perpendicular diffraction coefficients. For a dihedron

of angle x = (2 — n)m, J.B. KELLER has proposed
[Kelle62] :
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where A is the wavelength ; 8 (figure 1) is the an-
gle between the incident vector V and the edge unit
vector W (figure 2) ; 7 is the unit vector normal to
the dihedron incident face ; ¢ is the diffraction angle
between 7 and 17), which is the projection of the

diffracted vector Bpinto 7, a plane perpendicular to

the edge ; o is the incident angle' between 7 and

lFor continuity of diffraction coefficients, and therefore
diffracted rays radiance, o can have positive or negative value ;
in our implementation we take a negative value for o when
v < 0, with P=7A7 (see figure 2).



Fig. 2 Angles of diffraction in a plane perpendicular to
the dihedron edge

Vg, which is the projection of V into 7 ; O =41 for
D) or C=—-1for D,.

In an implementation without polarization states,
the expression of the diffracted radiance Lg;; can be
simplified as :
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where L;,. 1s the incident radiance.

2.2 Diffraction and Ray-Tracing

The main advantage of the GTD is that it is an ex-
tension of the Geometrical Optic Theory which is the
basis of the Ray-Tracing algorithm [Whitt80] and ex-
tended methods [Blasi94] [Jense97] [Perez97]. Includ-
ing the diffraction treatment into such algorithms im-
plies to extend them in a relatively simple way. The
solution presented in [Avene97] is based on a classical
Ray-Tracing implementation.

For evaluating the radiance received at the eye, rays
are emitted through the image pixels from the eye.
These rays can lead to a scene object at a point P.
So we must compute the emitted radiance at P in
the observer direction. In this way, we firstly cast
rays from P to each light source points, and secondly
recursively compute the radiance received at P from
the reflected and the refracted ways.

This work, which consists in evaluating the emit-
ted radiance at P, was done in the Shade function
of the Ray-Tracer. Aveneau and Mériaux’s solu-
tion [Avene97] consists in adding new possibilities to
this function. They introduce the diffraction algo-
rithm, which consists in finding the diffracted rays,
and so diffraction points on edges. For all edges, they
search for a diffraction path. If such a path exists the
diffracted radiance 1s computed and added to the re-
ceived radiance at point P. So they consider that the
visible diffraction is mainly due to paths which begin

Fig. 3 Geometric based algorithm

at source points, continue with one edge diffraction
point and some reflections.

2.3 Diffraction path search

Previous analytical solution. The main problem
here is to find the single diffraction point on the di-
hedron edge. In [Avene97], a first algorithm was
proposed, based on the extended Fermat’s principle.
This solution 1s based on the search of the shortest
optical path between two fixed points E and R, with
one unknown point P on that edge. This distance and
its first derivative are expressed with the parametric
coordinates of P. Therefore a recursive interpolation
gives the solution for P, if such a solution exists. Un-
fortunately, this algorithm has two flaws : firstly, no
time computation control can be done, and, secondly,
it 1s relatively complex to code. For these reasons, a
new algorithm is proposed here, based on a geomet-
rical approach.

New geometric solution. Let £ and R be two
points in 3D space, and P a point on an edge AB
(see figure 3) so that (EPR) is a good path in accor-
dance with extended Fermat’s principle (angles & and
3 seem different, but it 1s only because of perspective
distortion). If R, and E, are the projections of E
and R on edge AB respectively, it 1s obvious that P
lies between them. So if t. and t, are the paramet-
ric coordinates of these points on the edge, the angle
equality gives

t tan = dr de
an o« = tan =
(tr—1t)  (t—te)
_ tedr +t7'de

d. + d,

A simple algorithm for determining the diffraction
point on a dihedron edge can be derived from this
equality. All we need to do is to compute the pro-
jected points R, and E, (with dot products), and

the length of vectors RR, and EFE,. The computed
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Fig. 4 A 2D view of the adjacency problem and for the
topological partionment one.

solution P is a good one if it is between the two edge
extremities A and B. So a small optimization consist
in testing if the projected points £}, and R, are both
before A or after B. Indeed, if it is the case, then P
is not on the edge.

The pseudo-code for this function is :

Function SolveDiff (AB as edge;
E, R, &P as point) as Bool
Compute :
te as the projected point Ep coordinate
tr as the projected point Rp coordinate
If both Ep and Rp are before A or after B
Return False
Compute :
t = (te*dr + trxde) / (de + dr)
If P is not between A and B
Return False
Return True
End

3 DIHEDRON DIFFRACTION IN
IMAGE RENDERING

Now, the goal is to allow image computation with
diffraction treatment for any polygonal scene. Since
the final user cannot find a priori which dihedron
edges produce visible diffraction effects, we have
searched for an algorithm which automatically finds
all the solutions. The dihedron data structure has
first to be defined. A naive structure cannot be used
since there are two problems which, then, cannot be
solved.

3.1 What are the difficulties ?

The first problem appears when three or more poly-
gons are incident to the same edge. This is the case
for instance when an object 1s put down under an-
other one, or, in general, when two objects are adja-
cent. In this case it seems difficult to construct the

Fig. 5 Projected points and definitions in the plane I1

corresponding dihedron. The figure 4 allows us to
clarify this problem. With these three polygons ad-
jacent to the same edge and a naive dihedron data
structure, three different dihedra have to be con-
structed. So, since a diffraction path exists between
the points P; and P», the diffraction algorithm im-
plies firstly to verify this point three times, and sec-
ondly to compute the diffraction point three times. It
1s obvious that two of these computations should be
omitted, since only one is necessary. But these cases
cannot be easily detected with a naive data structure.

The second problem is very easy to understand
with the same figure 4. We have to verify if the com-
puted path between the points P; and P5 really exists.
Indeed, like in the figure, sometimes the diffraction
path crosses the diffracted dihedron. In other terms,
a dihedron cuts the 3D-space into two topological vol-
umes. So we must check that the optical path fully
belongs to one of them.

3.2 Dihedron Data Structure

Since the naive dihedron data structure does not al-
low us to solve the two previous problems, we have
defined a more complex structure : it contains a 3D-
straight line for the edges support, and a list of dihe-
dron faces.

The construction of such objects can be done easily
if the scene is made of polygons and if it is corefined?
(or subdivided) [Rossi90].

In order to solve the two previous problems with
this data structure, we need some new definitions.
Let £ and R be two fixed points, and let P be the
diffracted point on edge e so that EPR is a correct
extended optical path. TLet TI (see figure 5) be the
plane which contains P and is normal to the edge
unit vector @ (which points outward the page). Let
E, (resp. R,) be the projection of point E (resp. R)
onto the plane II. Let w (resp. %) be the unit vector
PE,/|IPE;|| (resp. PRy/|[PR|). Let m be the

2makes two objects “compatible” by subdividing the cells of
each object at their intersections with cells of the other objects



Fig. 6 Frzample of the dihedron computation at the fourth
tteration

unit vector so that up = uwZ A @ where A denotes the
vector product. Let € (resp. ) be the half-space
so that P’ isin Q; (resp. ) if and only if @ﬁ” >
0 (resp. @P—P)7 < 0). With these definitions and
the dihedron data structure previously defined, we
can write an algorithm which finds the true dihedron
on which diffraction appears, and determines if the
points £, P and R belong to the same topological
volume.

3.3 Validity of the extended optical path

The key idea of this algorithm is the iterative con-
struction of the true dihedron ; this one must be
composed by the two faces which are the limits of
the topological volume which encloses the points E
and R. Each face belongs to one half-space €2; or €2,

and 1s described by a coefficient ¢; which is equal to
the dot product @F}), where 17? is the outward unit
vector perpendicular to the edge e and parallel to the
face plane.

A loop, on the dihedron list faces which contain
the diffraction point P, builds the true dihedron iter-
atively. At the step 1, the current dihedron is known
by its two faces (if they exist). The method consists
in computing, at each iteration i, the extrema of the
set (¢j)1<j<i in ©Q; and in €, and the corresponding
faces. Let tmax and tmin be the extrema into £,
and let bmax and bmin be the extrema into €. An
example of such a process is given in figure 6.

At the end of the loop, it is easy to know if the
path 1s fully in a given topological volume. We have
a dihedron diffraction if at least one face edge con-
tains diffraction point P, and if one of the following
assertions is verified :

e R is contained in Qp (resp. £2:), and € (resp.
{2;) contains no face,

o O (resp. ) does not contain any face, R is
contained in € (resp. ), and (¢ < tmin) or
(¢ > tmaz) (resp. (¢ < bmin) or (¢ > bmax)),

e ), and €2 contain faces and either R 1s contained
in Qp and (¢ > bmax), or R is contained in
and (¢ > tmaz),

where ¢ = wW2. ;.

The pseudo-code of this algorithm s
Function FindDihedron(D as Dihedron;
E, R, P as Point;
F[2] as Face) as Bool
Initialisation:
tmin, tmax, tFmin, tFmax,
bmin, bmax, bFmin, bFmax
Compute:
Vectors uw and Uﬁ
For All Faces containing P Do
Compute : C; = U2~}¥
If F? is in ° Then
If C; < bmin Then

bmin = (;, bFmin = i
ElselIf C; > bmax then
bmin = (;, bFmin = i
EndIf
ElselIf (C; < tmin Then
tmin = (;, tFmin = i
Else If (; > tmax then
tmin = (;, tFmin = i
EndIf
EndIf

EndDo
If at least one Face contains P Then
If the solution is a good one
Initialise F[1] and F[2]
Return True
Endif
Return False
End
This treatment may appear costly, but in fact there
are rarely more than three or four faces which contain
the same diffraction point. So the problem is which
faces contain this point, and it is easy to solve.

4 DISCUSSION

The new algorithm presented in the second section for
efficiently searching the dihedron diffraction points
has been implemented and compared with the previ-
ous one. The results of this comparison (see figure 7)
show that the new version is more efficient than the
previous one, with an acceleration factor between 2.6
and 5.8. We have taken 10,000 random points £ and
R, and computed each solution 1,000 times. Com-
puting a solution with the new algorithm requires
less than 1.15us on a SGI-Origin 200 (monoproces-
sor R10000). Thus we ensure the fact that this sec-
ond method is always more efficient than the previous
one. Furthermore the computation time has an upper
limit which is 1.15us (computation time is constant

_>
Sie a@p- P < 0.
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Fig. 7 FEzperimental comparison of the two search algo-
rithms

if one removes the conditional at line 6 of the pseudo-
Code). Therefore the most important improvement
with this new analytic algorithm is that we always
find the good solution, which was not true with the
old numerical algorithm.

Next, we have implemented the dihedron data
structure and the last algorithm presented here. They
allow us to produce some images with dihedron
diffractions (with one diffraction between two fixed
points). For example figure 8 shows an interior scene
which is mainly illuminated by the sun through a
shutter. The camera looks at a wall which is in front
of the window with the shutter. So we can directly
observe the diffraction effect.

This 1mage computation costs 13 minutes, with a
resolution of 700x500 pixels, with 16 jittered rays per
pixel on a SGI-Origin 200 (monoprocessor R10000).
As everyone can notice, this image is not realistic :
indeed, the sun through the shutter must produces
some ellipses, but with a classical Ray-Tracing soft-
ware they look like rectangles.

In figure 9 the same scene has been computed with
dihedron diffractions. This second image looks really
more realistic than the previous one. Everybody can
verify at home or at work that this solution is more
in accordance with the physical reality. There is a
little problem with the rendering of the ellipses bor-
der. This is due to the absence of corner diffraction
treatment : indeed, with rectangles, we have diffrac-
tion on the edges. But this implies a discontinuity
between two edges treatment. The solution for solv-
ing this problem is to add diffracted rays emerging
from the intersection of these two edges that we call
corner. Yet this is not implemented at the moment,
since the diffraction coefficients for the corner remain
unknown.

The computation of this second image costs 46
times more than without diffraction computation.
This scene contains 270 polygons, and 378 dihe-
dra have been created from 1080 half-plane edges.

This method is still expensive, and needs to be opti-
mized. This expensive computation time is directly
connected to the diffraction algorithm (section 2.2),
and so to the edge number. In [Avene99], we present
a solution to improve the computation times with a
complexity study.

The main difference with the previous algorithm
[Avene97] is that we obtain diffraction effects only
where 1t is necessary, even though the old solution
produces diffraction even where it is impossible. This
comes from the fact that we consider now the scene
topology, thus eliminating all the bad diffraction ef-
fects.

5 CONCLUSION AND FUTURE
WORK

A new algorithm was presented which solves the
search of the diffraction point between two fixed
points. Its complexity is always better than the one
of the previous algorithm. Moreover it is easily im-
plementable. Furthermore we present the dihedron
data structure which allows us to solve the difficult
problem of diffraction path existence. This structure
allows an easy implementation of the global diffrac-
tion by dihedra in a ray-tracer based system.

We have implemented these algorithms in our li-
brary and used them for image synthesis and wave
propagation purposes. Therefore, as it can be ob-
served on the image shown in figure 9, our method
must be extended with the introduction of corner
diffraction : indeed, when two diffraction edges share
a vertex and so make a corner, the edge diffraction
treatment induces discontinuity effects (for instance
the discontinuous illumination at the left of the white
strips). The solution of this problem is to include cor-
ner diffraction. Nevertheless the difficulty is to find
the expression of the diffraction coefficient for such a
geometrical shape.

Future works include also the optimization of the
diffraction path search. First investigation leads to
very efficient results [Avene99], with, for the diffrac-
tion process, an acceleration factor up to 44300 on
our test scenes. Finally we would extend this method
to other geometrical shapes, like cylinders, spheres,
quadrics, etc. This requires the search for compre-
hensive diffraction coefficients for each new shape.



Fig. 8 Interior scene mainly illuminated by the sun through a shutter without diffraction

Fig. 9 Same scene with dihedron diffractions
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