Joint Estimation of Multiple Light Sources and Reflectance from Images

Bruno Mercier and Daniel Meneveaux

{mercier, daniel}@sic.univ-poitiers.fr

SIC Laboratory University of Poitiers (France)

B. Mercier

Goals

Introduction

From a set of images

Overview

Classification

Point Source

Direct. Source

Identification

Results

Conclusion

- Search for light sources
 - object geometry
 - joint estimation
 - \implies light sources & surface properties

Assumptions

Introduction

Classification

Point Source

Direct. Source

Identification

Results

Conclusion

octree shape from silhouette polygonal surface marching cubes

voxel : normal radiance samples

Modified Phong-model [Lew94]

$$L_r = \frac{L_s K_d}{\pi r^2} \cos \theta + \frac{(n+2)L_s K_s}{2\pi r^2} \cos \theta \cos^n \phi$$

Work Overview

Introduction

Overview

Classification

Point Source

Direct. Source

Identification

Results

Conclusion

Data organization

- voxels classification
- type of surface estimation
- Light source detection
 - point light source
 - directional light source
 - choose between point and directional
- Joint estimation
 - light sources
 - surface properties

Classification

Introduction

Overview

Classification

Point Source

Direct. Source

Identification

Results

Conclusion

hue

saturation

classes

Type of surface : diffuse/specular

Light sources detection

Classification

Introduction

Overview

Classification

Point Source

Direct. Source

Identification

Results

Conclusion

2 passes classification

saturation

classes

normals

subclasses

• Type of surface : diffuse/specular

Light sources detection

hue

Algorithm

Introduction

Overview

Classification

Point Source

Direct. Source

Identification

Results

Conclusion

For each subclass

for each voxel

 \implies estimation of the incident light direction

detecting a point light source

 \implies intersection

m incident light directions

1 direction = 2 orthogonal planes

• matrix system $\mathcal{M}X = \mathcal{D}$

• pseudo-inverse $X = \mathcal{M}_{pi}\mathcal{D}$

- Error $E_d = \sum_{i=1}^{2m} (\mathcal{M}_i \mathcal{X} \mathcal{D}_i)^2$
- detecting a directional light source \implies average

 V_m

Х

 V_2

 V_1

Diffuse surface

- radiance $L(V_i) = L_s K_d \cos(\theta_i)$
 - maximal radiance $L(V_2) = L_s K_d$ $\theta_i = \cos^{-1}(L(V_i)/L(V_2))$
 - intersection
 - \implies light source position X
- Specular-like surface specular lobe : parabolic surface $L(\alpha,\beta) = a(\alpha - \delta_{\alpha})^{2} + b(\beta - \delta_{\beta})^{2} + c$ • mirror direction $(\delta_{\alpha}, \delta_{\beta})$ gradient descent method intersection

Overview

Classification

Point Source

Direct. Source

Identification

Results

Conclusion

Conclusion

SI

Diffuse surface

- radiance $L(V_i) = L_s K_d \cos(\theta_i)$
- maximal radiance $L(V_2) = L_s K_d$
 - $\theta_i = \cos^{-1}(L(V_i)/L(V_2))$
- intersection

Overview

Classification

Point Source

Direct. Source

Identification

Results

Conclusion

Diffuse surface

- radiance $L(V_i) = L_s K_d \cos(\theta_i)$
- maximal radiance $L(V_2) = L_s K_d$

 \implies light source position X

- $\theta_i = \cos^{-1}(L(V_i)/L(V_2))$
- intersection

Diffuse surface

- radiance $L(V_i) = L_s K_d \cos(\theta_i)$
 - maximal radiance $L(V_2) = L_s K_d$ $\theta_i = \cos^{-1}(L(V_i)/L(V_2))$
 - intersection
 - \implies light source position X
- Specular-like surface specular lobe : parabolic surface $L(\alpha,\beta) = a(\alpha - \delta_{\alpha})^{2} + b(\beta - \delta_{\beta})^{2} + c$ • mirror direction $(\delta_{\alpha}, \delta_{\beta})$ gradient descent method intersection

Overview

Classification

Point Source

Direct. Source

Identification

Results

Conclusion

Directional Light Source Detection

Introduction

Overview

Classification

Point Source

Direct. Source

Identification

Results

Conclusion

Diffuse surface

•
$$L_V = L_s K_d \cos(\theta_V) = L_s K_d(\overrightarrow{I}.\overrightarrow{N_V})$$

• matrix system $\mathcal{M} X = \mathcal{D}$

$$\begin{pmatrix} N_{V_{1},x} & N_{V_{1},y} & N_{V_{1},z} \\ N_{V_{2},x} & N_{V_{2},y} & N_{V_{2},z} \\ \vdots & \vdots & \vdots \\ N_{V_{n},x} & N_{V_{n},y} & N_{V_{n},z} \end{pmatrix} \begin{pmatrix} L_{s}K_{d}I_{x} \\ L_{s}K_{d}I_{y} \\ L_{s}K_{d}I_{z} \end{pmatrix} = \begin{pmatrix} L_{V_{1}} \\ L_{V_{2}} \\ \vdots \\ L_{V_{n}} \end{pmatrix}$$

- pseudo-inverse \implies light source direction \mathcal{X}
- Specular-like surface
 - specular lobe
 - mirror direction
 - average of incident light directions

Directional Light Source Detection

Directional Light Source Detection

Results

Conclusion

Specular-like surface

- specular lobe
- mirror direction
- average of incident light directions

Joint Identification

Introduction

Overview

Classification

Point Source

Direct. Source

Identification

Results

Conclusion

For each voxels subclass

- detection of 2 light sources (point and directional)
- improving light source detection

$$E_{a} = \sum_{i=1}^{\#Vox} \sum_{j=1}^{\#Rad(V_{i})} \left[\left(\frac{L_{s}K_{d}}{\pi r^{2}} \cos \theta_{i} + \frac{(n+2)L_{s}K_{s}}{2\pi r^{2}} \cos \theta_{i} \cos^{n} \phi_{i,j} \right) - L_{i,j} \right]^{2}$$

• identification algorithm for $L_s K_d$, $L_s K_s$ and n

- Grouping identical light sources
 - ignoring some light sources
 - reflexion coefficients for each surface
 - power ratio between different light sources

Results

Introduction

Overview

Classification

Point Source

Direct. Source

Identification

Results

Conclusion

Randomly-generated samples (1-meter diameter surface)

Surface type	Object-source distance	Final estimation	inaccuracy on		
			source	$L_s K_d$	п
			pos/dir	$L_s K_s$	
diffuse	0 - 9m	point	< 1 <i>cm</i>	1%	×
	> 9 <i>m</i>	directional	< 1°		
specular- like	0-2m	point	< 15 <i>cm</i>	1%	5%
	6 <i>m</i>	none	1 <i>m</i>		
	> 6 <i>m</i>	directional	< 1°		

From images

- virtual objects lit by 3 directional light sources average precision : 6°
- real objects lit by 2 directional light sources average precision : 35°

Conclusion

Introduction

Overview

Classification

Point Source

Direct. Source

Identification

Results

Conclusion

Presented method

- multiple light sources detection
- modified Phong-BRDF model
- estimation of reflectance properties
- Light sources detection
 - depends on geometric reconstruction accuracy
 - more precise for directional light sources
 - more precise for diffuse surfaces
- Future works
 - using specular spots
 - using various brdf models
 - relighting objects

Joint Estimation of Multiple Light Sources and Reflectance from Images

Bruno Mercier and Daniel Meneveaux

{mercier, daniel}@sic.univ-poitiers.fr

SIC Laboratory University of Poitiers (France)

B. Mercier