Lumigraphes et reconstruction géométrique

Bruno Mercier, Daniel Meneveaux, Alain Fournier

{mercier, daniel}@sic.univ-poitiers.fr

Laboratoire IRCOM-SIC, Poitiers

Plan

- Introduction
- Reconstruction discrète
- Reconstruction surfacique
- Estimation des normales
- Résultats
- Conclusion et perspectives

Introduction

Introduction

Géométrie

Surface

Normales

Résultats

Conclusion

Utilisation d'images

- plaquage de textures
- movie-maps [Lip80] (séquences vidéo)
- virtual museum [MOC+92]
- quicktime VR [Che95] (images panoramiques)

Intérêts

- description géométrique simple
- représentation des détails
- visualisation interactive

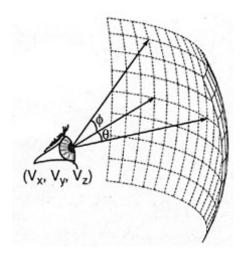
Inconvénients

- coût de stockage des images
- problèmes d'échantillonnage

Le Rendu Basé-Image

Introduction

Géométrie


Surface

Normales

Résultats

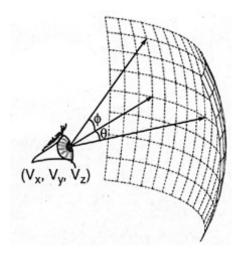
Conclusion

La fonction plénoptique [AB91] $f(V_x, V_y, V_z, \phi, \theta, \lambda)$

Le Rendu Basé-Image

Introduction

Géométrie


Surface

Normales

Résultats

Conclusion

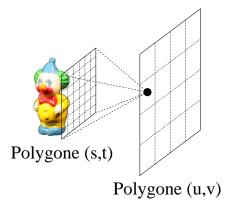
• La fonction plénoptique [AB91] $f(V_x,V_y,V_z,\phi,\theta,\lambda)$

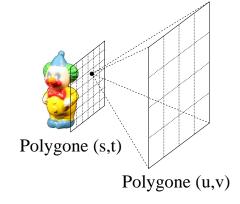
- Méthodes d'échantillonnage
 - la modélisation plénoptique [MB95]
 - les lumigraphes [GGSC96] ou lightfields [LH96]

Les lumigraphes

Introduction

Géométrie


Surface


Normales

Résultats

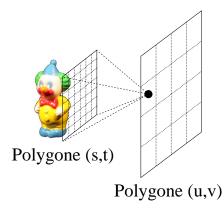
Conclusion

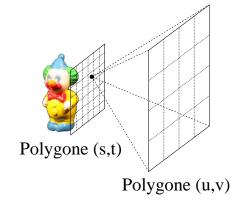
Paire de polygones parallèles (slab)

Les lumigraphes

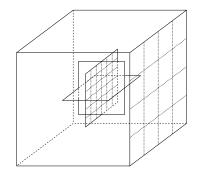
Introduction

Géométrie


Surface


Normales

Résultats


Conclusion

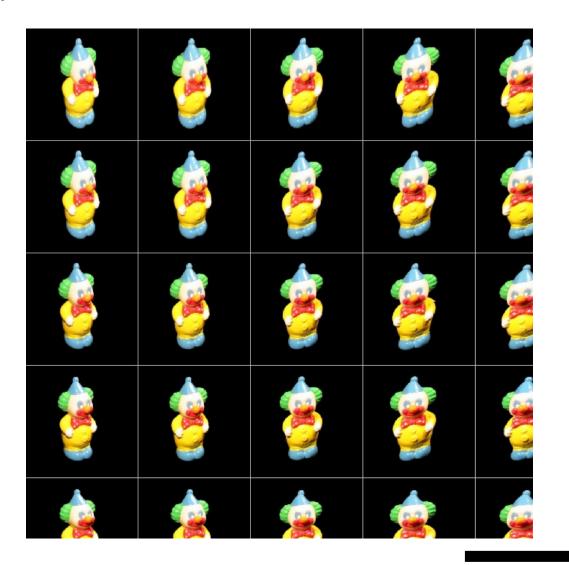
Paire de polygones parallèles (slab)

Echantillonnage avec 6 slabs

Les lumigraphes

Introduction

Géométrie


Surface

Normales

Résultats

Conclusion

Représentation d'un slab

Problématique

Introduction

Géométrie

Surface

Normales

Résultats

- Modifier l'éclairage
- Estimation de la forme
 - ombres auto-portées
 - estimer la normale
- Estimation de la normale
 - retrouver les sources
 - réflectance
 - ré-éclairage
- ⇒ Normale primordiale

Travail présenté

Introduction

Géométrie

Surface

Normales

Résultats

- Objectif : estimer la normale
 - sculpture de l'objet [Sze93]
 - octree, voxels
 - normale dans chaque voxel
- Normale à partir d'un maillage
 - marching cubes étendu aux lumigraphes
 - maillage polygonal
- Normale discrète
 - relations de voisinage
 - pas de surface

Introduction

Géométrie

Surface

Normales

Résultats

Conclusion

Algorithme itératif :

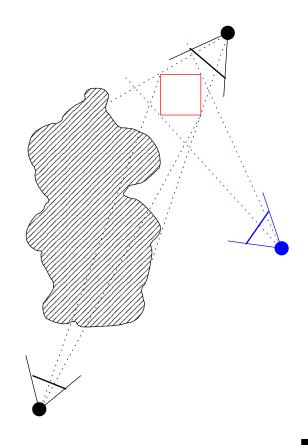
- Volume englobant l'objet
- Subdivision en 8 voxels
- Utilisation des images
- Classification
 - voxel externe
 - voxel interne
 - voxel ambigu
- Subdivision des voxels ambigus
- Convergence : précision suffisante

Introduction

Géométrie

Surface

Normales


Résultats

Conclusion

Classification : parcours de toutes les images

pour chaque image, si des voxels à l'extérieur

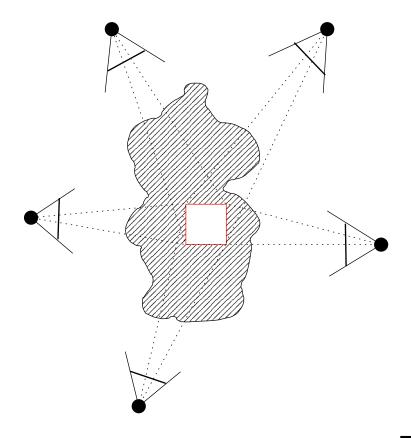
alors voxels externes (sculpture)

Introduction

Géométrie

Surface

Normales


Résultats

Conclusion

Classification : parcours de toutes les images

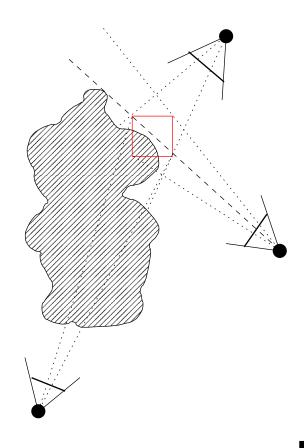
pour toutes les images,
 si des voxels
 à l'intérieur

Introduction

Géométrie

Surface

Normales


Résultats

Conclusion

Classification : parcours de toutes les images

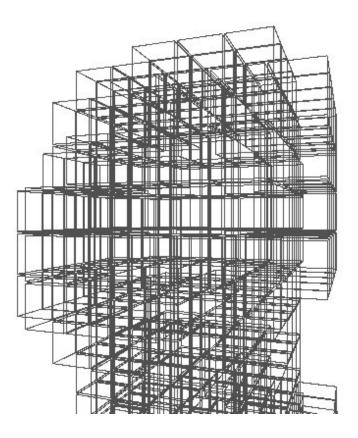
après parcours si des voxels non classés

alors voxels ambigus

Introduction

Géométrie

Surface


Normales

Résultats

Conclusion

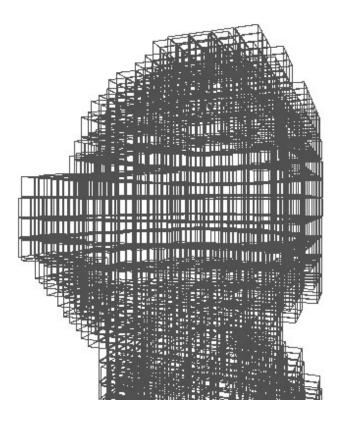
Exemples

surface discrète au niveau 5

Introduction

Géométrie

Surface


Normales

Résultats

Conclusion

Exemples

surface discrète au niveau 6

Introduction

Géométrie

Surface

Normales

Résultats

Conclusion

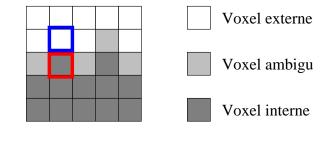
Exemples

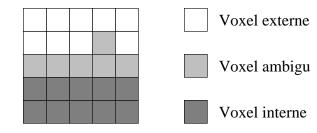
surface discrète au niveau 9

Introduction

Géométrie

Surface


Normales


Résultats

Conclusion

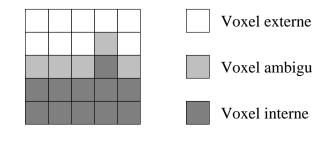
- Ensemble des voxels ambigus
- Doit être 6-connexe
- Modifiée dès la sculpture

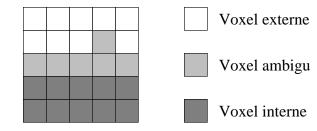
épaississement

Introduction

Géométrie

Surface


Normales


Résultats

Conclusion

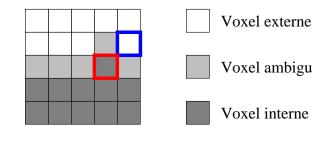
- Ensemble des voxels ambigus
- Doit être 6-connexe
- Modifiée dès la sculpture

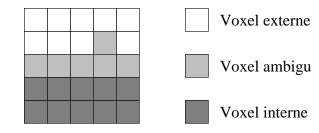
épaississement

Introduction

Géométrie

Surface


Normales


Résultats

Conclusion

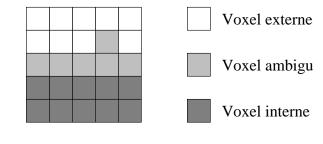
- Ensemble des voxels ambigus
- Doit être 6-connexe
- Modifiée dès la sculpture

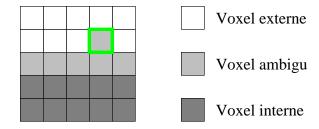
épaississement

Introduction

Géométrie

Surface


Normales


Résultats

Conclusion

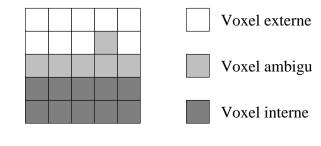
- Ensemble des voxels ambigus
- Doit être 6-connexe
- Modifiée dès la sculpture

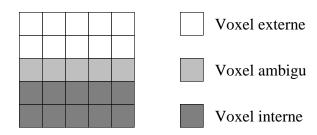
épaississement

Introduction

Géométrie

Surface


Normales


Résultats

Conclusion

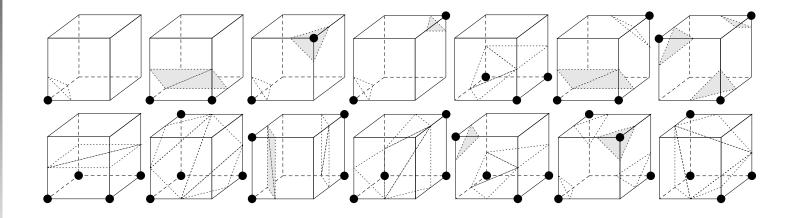
- Ensemble des voxels ambigus
- Doit être 6-connexe
- Modifiée dès la sculpture

épaississement

Marching Cubes (MC)

Introduction

Géométrie


Surface

Normales

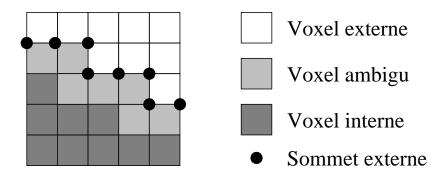
Résultats

Conclusion

- Triangles dans un voxel [LC87]
- Sommets : intérieur/extérieur
- Surface : une de ces 14 combinaisons

Pondération sur les sommets

Introduction


Géométrie

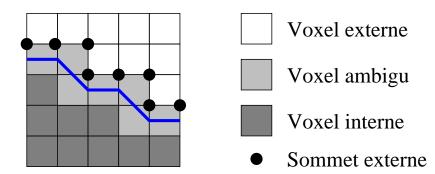
Surface

Normales

Résultats

- Triangles dans les voxels ambigus
- Classification des sommets
- Pas de pondération
- Milieu des arêtes

Introduction


Géométrie

Surface

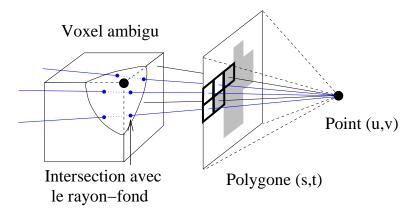
Normales

Résultats

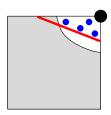
- Triangles dans les voxels ambigus
- Classification des sommets
- Pas de pondération
- Milieu des arêtes

Introduction

Géométrie


Surface

Normales


Résultats

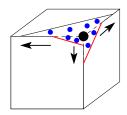
Conclusion

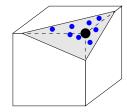
Utilisation des rayons-fond

- cohérence avec les échantillons
- affiner le maillage
- Segment de coupe sur chaque face

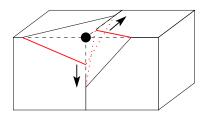
Introduction

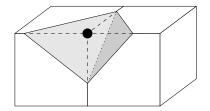
Géométrie


Surface


Normales

Résultats

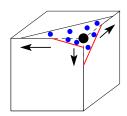

Conclusion

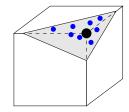

Ajustement entre 2 faces adjacentes

Ajustement entre 2 voxels voisins

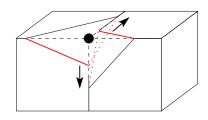
Introduction

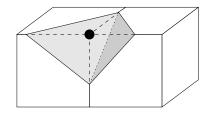
Géométrie

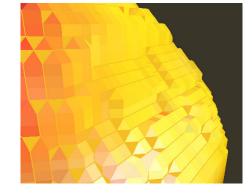

Surface


Normales

Résultats


Conclusion


Ajustement entre 2 faces adjacentes



Ajustement entre 2 voxels voisins

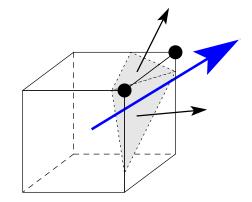
Maillage polygonal complet

Normale à partir du maillage

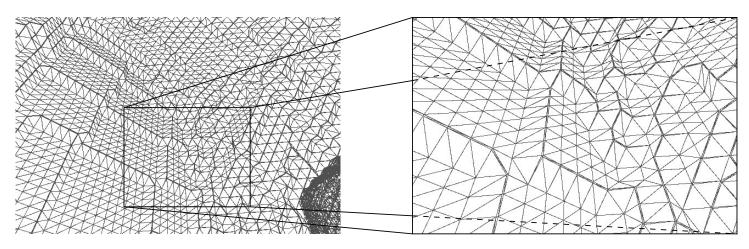
Introduction

Géométrie

Surface


Normales

Résultats


Conclusion

Normale des triangles

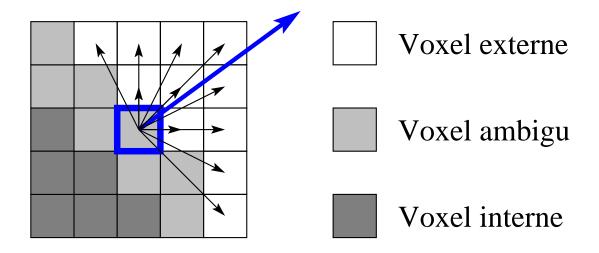
Moyenne pondérée

Surface accidentée dans les courbures

Lissage

Normale discrète

Introduction


Géométrie

Surface

Normales

Résultats

- Direction des voxels externes
- Moyenne
- Exemple : voisinage de taille 2

Comparaison des normales

Introduction

Géométrie

Surface

Normales

Résultats

- Entre les 2 méthodes
- Différence angulaire

taille du voisinage		1	3	5
niveau 8	moyenne	10.2°	4.9°	5.6°
	écart-type	8.2°	3.5°	11.9°
niveau 9	moyenne	8.8°	4.0°	3.3°
	écart-type	8.0°	2.7°	2.3°

- Diminution de l'écart-type
- Normales quasi-identiques
- Lissage nécessaire

Comparaison des normales

Introduction

Géométrie

Surface

Normales

Résultats

- Entre les 2 méthodes
- Différence angulaire

taille du voisinage		1	3	5
niveau 8	moyenne	10.2°	4.9°	5.6°
	écart-type	8.2°	3.5°	11.9 ^o
niveau 9	moyenne	8.8°	4.0°	3.3°
	écart-type	8.0°	2.7°	2.3°

- Diminution de l'écart-type
- Normales quasi-identiques
- Lissage nécessaire

Conclusion

Introduction

Géométrie

Surface

Normales

Résultats

- Objectif : estimer la normale
- Travaux réalisés
 - géométrie sous forme de voxels
 - maillage précis de la surface
 - 2 méthodes d'estimation de la normale
- Estimation de la normale
 - résultats proches
 - normale discrète

Perspectives

Introduction

Géométrie

Surface

Normales

Résultats

- Suite logique
 - comparaison : normale estimée / normale réelle
 - détection des sources
 - estimation d'une brdf
- A plus long terme
 - modification de l'éclairage
 - insertion dans des scènes

Lumigraphes et reconstruction géométrique

Bruno Mercier, Daniel Meneveaux, Alain Fournier

{mercier, daniel}@sic.univ-poitiers.fr

Laboratoire IRCOM-SIC, Poitiers

