

SIGNAL - IMAGE - COMMUNICATIONS
FRE CNRS n°2731

AN EXPERIMENTAL COMPARISON OF
ACCELERATION SCHEMES FOR

DENSELY OCCLUDED ENVIRONMENTS

D. FRADIN, D. MENEVEAUX

RAPPORT DE RECHERCHE

n° 2006 - 01

Janvier 2006
SIC, Université de Poitiers - France

__
SIC, UFR SFA, Université de Poitiers
Bâtiment SP2MI - Téléport 2 - Bvd M. et P. Curie - B.P. 30179 - F - 86962 FUTUROSCOPE CEDEX - FRANCE
Tél. (+33) (0) 5 49 49 65 67 - Fax (+33) (0) 5 49 49 65 70

AN EXPERIMENTAL COMPARISON OF ACCELERATION
SCHEMES FOR DENSELY OCCLUDED ENVIRONMENTS

David Fradin Daniel Meneveaux
SIC laboratory

University of Poitiers, France
{fradin,meneveaux}@sic.univ-poitiers.fr

Images with photon-mapping global illumination (final gathering) for three scenes: Octagon, Soda Hall and L-Building.

Keywords: Densely occluded scenes, acceleration data structures, cells and portals, topology, memory coherent ray shoot-
ing, global illumination.

Abstract: This paper presents a comparative study of acceleration schemes forglobal illumination and ray tracing in
large buildings. The system implemented relies on a memory-coherent ray shooting architecture. The scene is
subdivided into cells, corresponding either to rooms when the informationis available, or to voxels obtained
with a uniform grid subdivision. Inside each cell an additional acceleration data structure is placed. Regular
grids, multi-grids or kd-trees have been used with various parameters.We discuss the criteria for constructing
different acceleration data structures as well as their advantages and drawbacks.

1 Introduction

Ray shooting is often used as a basis for comput-
ing realistic-looking synthetic images and/or global
illumination. Many applications such as recursive
ray tracing strongly rely on ray shooting efficiency.
Since the early years of ray tracing, space partition-
ing methods have been proposed to reduce the number
of intersection tests for each ray during scene traver-
sal. For general scenes, the most popular acceleration
schemes are based on uniform/hierarchical grids, oc-
trees and kd-trees.

Computing global illumination for large scenes still
remains a difficult task for two main reasons. First,
the whole scene, including geometry, photometry and
radiometry, together with an acceleration structure, is
too memory-intensive. Second, an accurate global il-
lumination solution requires several hours of comput-
ing time.

In the context of densely occluded indoor scenes,
several subdivision methods have been proposed
(John M. Airey, 1990; Teller et al., 1994; Mene-
veaux et al., 1998). These methods subdivide the en-
vironment into cells using large occluders. Each cell

boundary is thus handled by walls with portals. In-
tuitively, ray shooting should benefit from this type
of subdivision since most rays intersect walls or ob-
jects located in a cell. Only a few rays should leave a
cell through (relatively small) portals. However, such
a topology-based subdivision alone is not sufficient
for accelerating ray shooting in the case of large cells
which contain a high number of objects.

In this paper, we compare experimentally several
schemes for accelerating ray shooting. First, we wish
to quantify the advantage of using topology instead of
general acceleration schemes which are independent
of the scene structure. Second we wish to compare
the efficiency of several acceleration data structures
placed inside cells.

Since, for complex models, the whole geometry
cannot be stored in the memory, ordering strategies
have to be implemented. We use a memory-coherent
ray tracing approach, relying either on a coarse uni-
form grid as in (Pharr et al., 1997), or on a list of
topology-based cells as in (Fradin et al., 2005).

We provide some results for photon-mapping
global illumination (Jensen, 2001). Ray tracing with
final gathering was used for generating the images

shown on the first page. In addition to ray-object in-
tersection, we are also interested in the preprocessing
time required for constructing the data structure.

This paper is organized as follows. Section 2
discusses previous work concerning the acceleration
schemes for complex scenes. Section 3 gives details
about the scenes used. Section 4 describes the accel-
eration schemes we compare. Section 5 further details
the principle used for memory-coherent ray tracing in
complex architectural scenes. Finally, Section 6 dis-
cusses the results obtained.

2 Related Work

In (Szirmay-Kalos et al., 2002; Havran, 2000),
the advantages and drawbacks of three acceleration
schemes are discussed: uniform grids, kd-trees and
octrees. According to their study, kd-trees and octrees
perform better than uniform grids with sparsely pop-
ulated scenes since large empty areas are adaptively
processed. The authors are essentially interested in
ray-object intersection. The time required for con-
structing the acceleration structure is not discussed.

For complex environments, ray tracing has proven
efficient with an appropriate acceleration structure.
For instance, in (Wald et al., 2001; Keller and Wald,
2000; Wald et al., 2004), a kd-tree is used for interac-
tively rendering various types of scenes, comprising
large buildings. The structure provided by the subdi-
vision is efficiently stored on the disk so that blocks
of information can be retrieved every time a new part
of the scene is required. The major drawback for con-
structing effective kd-trees remains in the preprocess-
ing time required. Several hours can be necessary for
scenes composed of several millions of triangles.

In (Pharr et al., 1997) a memory-coherent ray trac-
ing approach is proposed, based on a uniform subdi-
vision. Voxels should contain about a thousand poly-
gons. They are processed separately during traversal
and thus need not be in the memory. Inside each voxel
an acceleration structure is used (e.g. a uniform grid).

For buildings, large occluders, such as walls, con-
siderably reduce the number of objects seen from a
given viewpoint or region. Global illumination tech-
niques can benefit from this information, as shown in
previous approaches for the radiosity method, with
a binary space partitioning method (John M. Airey,
1990; Teller et al., 1994) or according to construction
rules (Meneveaux et al., 1998). For each resulting cell
a visibility graph indicates the set of potentially visi-
ble cells, commonly known as thePotentially Visible
Set or PVS.

Cells-and-portals data structures have mainly been
used for radiosity. For example, in (Teller et al.,
1994), PVS are used for loading only a subpart of
the scene. Various ordering strategies have been pro-

posed for reducing computing time and taking into ac-
count memory management. In (Fradin et al., 2005),
a photon-mapping approach was implemented with-
out PVS for further reducing the number of polygons
required in the memory. In each cell, a uniform grid
is used for reducing ray-object intersections.

The methods described above were successfully
used for global illumination and rendering. Some of
them exploit scene topology with cells and portals for
reducing visibility computation and the set of poly-
gons stored in the memory. However, as shown in
(Pharr et al., 1997), cells can be generated using a
regular grid with more generality. In this paper, we
propose to compare several acceleration structures for
ray shooting and global illumination, with and with-
out topology.

3 Scene Representation

With a topologicalsubdivision, cells should corre-
spond to rooms and portals should be doors or win-
dows (Figure 1). When two cells share the same por-
tal, they are considered asadjacent. With a uniform
subdivision, cells correspond to voxels and portals are
delimited by voxel faces.

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

����������
����������
����������
����������

����
����
����
����

����
����
����
����

�����
�����
�����
�����

���
���
���
���

�����
�����
�����
�����

���������������
���������������
���������������
���������������

Room / Cell

Walls

Portals

Large occluder

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Furniture

Figure 1: Scene representation with cells and portals.

In our implementation, cells can be created either
from a topology-based subdivision or using a uniform
grid. Portals are also required for storing rays leaving
a cell through a portal during memory-coherent ray
shooting. We do not use PVS since the number of
triangles contained in one cell can be high and thus
also become too memory-intensive.

4 Acceleration Schemes

For tracing rays in a given cell, we used one of the
following acceleration structure with various parame-
ters: uniform grids, hierarchical grids or kd-trees.

We are mainly interested in the choice of an ac-
celeration structure to place inside cells for shooting
rays. We wish to take into account the computing time
for both data structure construction and ray-object in-
tersection.

Ray traversal complexity has already been dis-
cussed in details by several authors (MacDonald and
Booth, 1990; Havran, 2000). In this paper, we will
also briefly discuss the complexity associated with the
construction of each data structure.

4.1 Uniform and hierarchical Grids
Uniform grids have many advantages. Construction is
fast with a complexity inO(n) for distributing poly-
gons in the grid voxels,n being the number of poly-
gons. For scene traversal the incremental process is
fast since it only requires a few operations.

For complex scenes, this structure can be used
for a coarse cell representation such as in memory-
coherent ray tracing. Another acceleration structure
(for instance another uniform grid) can then be placed
inside each voxel for accelerating local ray tracing.

However, in general, objects are far from uniformly
distributed. Moreover, finding the appropriate resolu-
tion for a given scene is not obvious: the number of
objects inside each voxel should not be too high; the
number of empty cells should be as low as possible.
This is why memory allocation has to be carefully im-
plemented with high resolutions.

A hierarchical representation can thus be used.
When a voxel contains too many triangles, it is sub-
divided again into another uniform grid. This recur-
sive initialization highly depends on the grid resolu-
tion and the maximum of triangles stored in a voxel.
The construction process has a complexity inO(n)
for each grid level, and thus inO(n log n) for the
whole hierarchy. During ray traversal, every time a
finer grid is reached, an initialization process is re-
quired for computing ray-subgrid traversal.

4.2 Kd-Trees
Kd-trees have been successfully used for rendering
very complex scenes at interactive frame rates (Wald
et al., 2001; Wald et al., 2003). Traversal only re-
quires a few operations for a given ray. It only relies
on the intersection between ray and splitting plane for
each kd-tree level.

During data structure construction, the chosen
splitting plane determines ray traversal efficiency
(MacDonald and Booth, 1990; Havran, 2000). We
have implemented three strategies:

Spatial-median:
The splitting plane systematically splits the current
node into two halves each having the same size. This
subdivision method is fast since it only relies on the
systematic choice of the splitting plane; geometry
contained in each node is only used for distributing
objects in the current node and possibly for algorithm
termination. The complexity for choosing the split-
ting plane is inO(1) for each level and inO(log n)
for the whole scene. The repartition of triangles in

the nodes has a complexity inO(n. log n) in the
worst case as for the other strategies.

Cost model:
Heuristic based on the number of objects and the
volume area of each child. Choosing the best splitting
plane with this model requires testing all the ver-
tices contained in the current node (Havran, 2000).
Thus, the computing time required for the structure
construction is higher than with a spatial-median
subdivision. Choosing the splitting requiresO(n2)
operations since for each polygon, the cost function
requires testing all the others. Thus, the whole tree
construction has a complexity inO(n2

. log n).

Bounding box model:
Heuristic based on a quick sort of object bounding
boxes in each node. This heuristic also minimizes
the number of objects cut by the plane and balances
the tree (Sźecsi, 2003). Sorting is fast and choosing
the best splitting plane is done with respect to the
number of objects for each splitting plane. This
scheme is a compromise for reducing construction
time compared to the cost model and ray traversal
time compared to the spatial median strategy. The
complexity for sorting the objects with a quick sort
and finding the splitting plane is inO(n2) in the
worst case, but inO(n. log n) practically.

4.3 Cells and portals

For large buildings, a subdivision scheme relying on
topology seems intuitively better than a brute-force
subdivision since large occluders considerably reduce
visibility.

With a radiosity approach as proposed in (Teller
et al., 1994), every time a cell is loaded into the
memory for shooting/gathering light energy, the set
of cells corresponding to the PVS has to be loaded
into the memory as well. Portals can also be used as
interfaces between cells with a memory-coherent ap-
proach as proposed in (Fradin et al., 2005). Ideally,
such a subdivision should be available from the origi-
nal model since architects or artists actuallyknow the
scene structure.

We do not discuss the method used for generat-
ing a topological subdivision. It can be provided by
a Binary Space Partitioning (or BSP) method (John
M. Airey, 1990; Teller et al., 1994), a semi-automatic
process (Meneveaux et al., 1998), or using a building
modeler as in (Fradin et al., 2005).

5 Program Architecture

Memory coherence is a key point for accelerating
ray tracing. Not all the geometric primitives should
be checked every time a ray is traced. Instead, groups

of rays can be traced within a cell. When a ray gets
out of one cell, it is stored and propagated later, when
the corresponding cell is processed.

initializationinitialization
Geometry Still

a photon ?

Yes

propagation
No

END

Propagate
photon impacts

Store
(if necessary)

Load cellChoose
"best" cell

RayRay

all local rays

Figure 2: Ray propagation system.Geometry initialization
corresponds to the construction of an acceleration structure.
Ray initialization consists in shooting photons from light
sources (or primary rays from the camera). Portals are used
for propagation in cells.

Figure 2 presents our ray/photon propagation sys-
tem. The architecture is the same as in (Fradin et al.,
2005). The initialization process precomputes accel-
eration data structure for each cell. It also estimates
the size necessary for storing each cell in the mem-
ory, including geometry, portals, acceleration struc-
ture and so on. For global illumination, photons are
first shot from light sources then propagated within
the environment.

Photon impacts are stored in several photon maps
(one for each cell). Russian Roulette is used to decide
whether photons are reflected. When a photon hits
an object, it is stored in the photon table of the cor-
responding cell. Each photon table is partially stored
on the disk; when the number of photons stored in
the memory is too high, the list is appended into the
corresponding file. When a photon hits a portal, it is
stopped and stored in a specific data structure. Its path
is continued when the corresponding adjacent cell is
processed. A least recently used (LRU) scheme is
used for memory management of cells.

When photon shooting is complete, photon-maps
are constructed for each cell. During ray tracing, the
same principle is applied. Rays are shot within the en-
vironment, stored at the portals and propagated when
the corresponding cells are processed.

6 Results

We used a Dual Intel Xeon 2GHz processor with
2GB of RAM and a 1TB RAID/disk. We used the
architecture described above for both global illumi-
nation and ray tracing in several large buildings with
furnished rooms.

6.1 Scene Description
Both the rendering process and photon propagation
method are based on ray shooting with triangulated

polygons. Test scenes are illustrated in Figure 3.

Figure 3: Top: Soda Hall; Top-left: Z-Building. Top-
right: L-Shape building. Bottom-left: Octagon building.
Bottom-right: Tower101. Furniture has been placed manu-
ally in L-Shape / Octagon and automatically in Z-building /
Tower101.

Building Polygons Floors Rooms Lights Photons

(millions) (millions)

L-Shape 0.34 2 27 24 1.2

Z-Building 1.08 1 22 15 0.75

Octagon 5.25 4 232 155 7.75

Soda Hall 1.51 7 250 2.7K 135

Tower 100 1074 101 17.8K 61K 3050

Table 1: Building properties for our test scenes.

Table 1 provides the number of triangles for each
building as well as the total number of photons shot.
A seed is used for random numbers so that the num-
ber of photons stored for all scenes remains the same
independently of the used acceleration scheme.

Database information is given in Table 2. The Oc-
tagon and Z-building are made up with a few rooms
containing a high number of triangles (the most fur-
nished room contains more than 400K triangles). The
other buildings contain a high number of smaller
rooms. For the Soda Hall building, the subdivision
process produces 225 cells (that do not exactly cor-
respond to rooms). Note that the provided database
sizes do not include photon maps.

6.2 Cells with Topology
The following results use the memory-coherent
approach described above. For scenes with a cells-
and-portal subdivision relying on rooms, we have
applied several acceleration schemes: uniform grids,

Building Avg tri. Max tri. Disk space Disk space

in room in room uncompr. compr.

L-Shape 12 020 68 400 37.9MB 3.55MB

Z-Building 48 816 217 429 127MB 10.4MB

Octagon 22 621 451 606 624MB 54.8MB

Soda Hall 6688 44 156 199 MB 17 MB

Tower 100 60 134 172 772 110 GB 8.5 GB

Table 2: Database information for our test scenes with (i)
average number of triangles in the rooms, (ii) max number
of triangle in the rooms (iii) uncompressed database size
(iv) compressed database size.

hierarchical grids and kd-trees with various heuristics.

Uniform grids
When associating uniform grids with cells, propaga-
tion time still highly depends on the grid resolution
which should not be too high or too low. Figure 4
illustrates computing time with respect to resolution
for the most complex building we have.

 0

 1000

 2000

 3000

 4000

 5000

 6000

16 32 64 128 256

T
im

e
in

 s
ec

on
ds

Grid resolution

Initialization time
Total time

Figure 4: Cumulative time for initializing grids and propa-
gating photons in one floor of Tower101 building with sev-
eral grid resolutions (50 000 photons shot for each light
source), a total of 4.14 billions of photons are stored for
1.07 billion triangles.

When the grid resolution is low, each voxel con-
tains a high number of triangles, intersection tests are
more numerous in each voxel and thus more time con-
suming. With increasing resolutions, triangle lists are
smaller but lots of empty voxels are crossed during
ray traversal.

For all the tests we made, the curve aspect shown in
Figure 4 remains the same independently of the num-
ber of rays/photons shot, even though computing time
increases.

For each building, the optimal resolution can be
different. Figure 5 gives the total computing time
of photon-mapping in four buildings at different
grid resolutions. The ideal resolution for manually
furnished buildings (L-Building and octagon) is close

 0

 1000

 2000

 3000

 4000

 5000

 6000

16 32 64 128 256

T
ot

al
 ti

m
e

Grid resolution

Soda Hall
Tower01
Octagon

Z-Building
L-Building

Figure 5: Grid resolution over runtime (in seconds) for four
different buildings (50 000 photons by source).

to 48 while for automatically furnished buildings, it is
rather close to 96 (Z-Building and Tower). According
to our experiments, tests using uniform aggregation
of objects do not provide the same type of results
than with hand made models.

Hierarchical grids

 0

 2000

 4000

 6000

 8000

 10000

 12000

100 500 1000 2000

T
im

e
in

 s
ec

on
ds

Max number of polygons per voxel

Initialization time
Total time

Figure 6: For a given building (first floor of Tower101) and
a given grid resolution (64

3 voxels), the maximum number
of triangles in each voxel clearly affects the initialization
time.

Figure 6 shows that initialization is the critical
phase of this acceleration data structure. When the
maximum of triangles per voxel is reduced, the
hierarchy depth increases, more subgrids are created
and the initialization time is higher. Conversely, when
increasing this number, hierarchy depth decreases
and computing time gets closer to a uniform grid.

Hierarchical grids are advantageous with sparsely
populated scenes. When buildings are subdivided
using cells and portals, the number of polygons in
each cell is not high enough for having an efficient

data structure.

Kd-trees
With kd-trees, polygon density in the scene is taken
into account more efficiently. Table 3 represents the
average depth obtained in cells for each building.

Building Spatial median Cost model Bounding boxes

L-Shape 15,3 26,04 27,63

Z-Building 15,18 22,36 32,73

Octagon 16,73 26,33 28,08

Soda Hall 16,2 26,99 27,80

Tower 100 15,88 28,24 40,26

Table 3: Average depth of kd-trees in cells.

Figure 7 illustrates the total computing time
required for global illumination in one floor of
Tower101 scene using kd-trees with cells and portals.

 0

 500

 1000

 1500

 2000

Median Cost BBox

20 000 photons by source

Propagation
Initialization

 0

 500

 1000

 1500

 2000

Median Cost BBox

50 000 photons by source

Propagation
Initialization

Figure 7: Computing time for photon-shooting in one floor
of Tower101 with a kd-tree acceleration data structure.

The bounding box heuristic is a compromise be-
tween construction and ray traversal. Object density
is taken into account together with tree balancing.
Construction is faster than with the cost model heuris-
tic. However, contrary to our expectations, this can be
the worst choice with topological cells.

Spatial median cut does not depend on the objects
contained in each nodes. This is why data structure
construction is very fast. However, the time required
for ray traversal is high compared to the cost model
heuristic.

Finally, the cost model kd-tree is time consuming
to construct. Nevertheless, traversals are much faster
because cells are distributed efficiently with respect
to objects density. When only a few photons are shot,
construction remains too high compared to scene tra-
versal.

Note that depending on the scene and the number of
rays to propagate, thebestheuristic is not systemati-
cally the same. With20 000 photons, spatial median
plane heuristic is faster because of the initialization
phase. When the number of photons increases, the
cost model heuristic is definitely more efficient. Fig-
ure 8 shows that depending on the scene structure and
on the number of rays / photons, the heuristic provid-
ing the lowest computing time is not systematically
the same.

With 20 000 photons by source

 0

 500

 1000

 1500

 2000

L-Building Z-Building Octagon SodaHall Tower01

T
im

e
in

 s
ec

on
ds

Spatial Median
Cost Model

Bounding Box

With 50 000 photons by source

 0

 500

 1000

 1500

 2000

L-Building Z-Building Octagon SodaHall Tower01

T
im

e
in

 s
ec

on
ds

Spatial Median
Cost Model

Bounding Box

Figure 8: Total computing time obtained for global illumi-
nation in four buildings according to splitting plane choice
heuristics. (top) with20K photons for each light source;
(bottom) with50K photons for each light source.

Figure 9 provides a comparison between the best
results for each acceleration structure. With topolog-
ical cells, a regular grid always provides the shortest
overall computing time (including structure construc-
tion).

6.3 Cells with Uniform Grids
For the following results, cells are constructed using
a uniform subdivision, without taking large occluders
into account.

We made some experiments with various resolu-
tions. Table 4 gives only results for the best parame-
ters. For global illumination with a photon-shooting
approach, low resolution grids remain more efficient.
For example, a grid with a resolution of643 creates
more than260K cells; the high number of cells, por-
tals and photons to propagate decreases dramatically
the algorithm performances.

Note that large triangles are referenced in several
cells; the triangle repartition of each cell is not uni-
form. A kd-tree is thus more efficient in this con-

 0

 200

 400

 600

 800

 1000

 1200

L-Building Z-Building Octagon Soda Hall Tower01

Grids
HGrids
Kdtree

Figure 9: Computing time for each acceleration structure
associated with a topological subdivision,50 000 photons
are shot for each light source source.

Building RG / Cells Avg # tri Grids H-Grids Kd

L-Building 10 / 300 1159 113 210 46

Octagon 16 / 768 7206 935 1101 593

Soda Hall 16 / 1760 978 1575 2760 928

Table 4: Best computing time (in seconds) for photon-
shooting including acceleration structure construction.
Cells are constructing using a uniform subdivision.RG cor-
responds to the grid resolution for cells.Cells correspond to
the number of cells generated for the given grid resolution.

text (Table 4). The bounding-box model is the most
suitable since the uniform cells subdivision creates
large gaps between triangles (Figure 10) and the time
required for constructing the structure remains short
compared to the cost model.

6.4 Rendering

Once photon propagation is complete, images can be
generated with or without final gathering. Photon
maps are constructed from tables of photons in each
cell (Jensen, 2001). This process is very fast with less
than a second for each cell. For instance, in the Soda
Hall scene, this operation lasts 6 min 46 for shooting
1.35 billion photons in 1760 cells.

Primary rays are shot, from the viewpoint. For each
intersection pointIp, direct and indirect illumination
is estimated. For indirect illumination, we made some
tests with (i) the photons nearest toIp; and (ii) a final
gather approach.

Since initialization has already been computed, the
kd-tree data structure remains the most effective with
final gather, especially with the cost model heuris-
tic. Nevertheless, contrary to photon propagation, the
computing time of each structure is not extremely dif-
ferent since much time is spent for searching photons
in the photon-maps. Ray shooting and photon search
represent between 90% and 95% of total computing

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Median Cost BBox

Octagon

Propagation
Initialization

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

Median Cost BBox

Soda Hall

Figure 10: Results obtained with the 3 heuristics used for
splitting plane choice.

time. Alone, photon search represents at least 70% of
time for generating one image.

Eventually, with a topological subdivision, the im-
age generation is at least 4 times faster than with
a uniform cell subdivision since portals are much
smaller and only a few rays cross several voxels be-
fore intersecting a face. In practice, less than 5% of
rays hit portals.

6.5 Comparison
Generally speaking, for global illumination and ray
tracing, a topological cell representation is preferable
(when possible) since cells are delimited by large oc-
cluders (Figure 11). Rays or photons only leave cells
through small portals, favoring data locality.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

L-Building Z-Building Octagon Soda Hall Tower01

Topology
Uniform

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

L-Building Z-Building Octagon Soda Hall Tower01

Initialisation
Initialisation

Figure 11: Comparison between smallest computing time:
uniform cells vs. topology-based cells.

With topological cells, regular grids have provided
the best overall computing time (including data struc-
ture construction), even compared to kd-trees. How-
ever, kd-trees perform better for ray propagation since
the scene subdivision is more adapted to objects den-
sity. Generally-speaking, kd-trees would be prefer-
able when a high number of rays have to be shot.
For instance, if a huge number of photons require to
be shot in a large building during global illumination
- even with 4 billion photons shot in the Tower101
building, regular grids still remain faster; if many im-
ages with final gather have to be produced for the

same scene or with interactive ray tracing as in (Wald
et al., 2001).

When cells are produced with a uniform subdivi-
sion, the most efficient acceleration data structure is a
kd-tree.

7 Conclusions

Depending on the application, the time required for
constructing the acceleration data structure can have
to be taken into account, especially for very large
scenes. For interactive walkthrough, this preprocess-
ing can be as long as necessary since the aim is to
produce high quality images as fast as possible. How-
ever, for global illumination in scenes composed of
several million triangles, the overall computing time
including scene preprocessing has to be as small as
possible.

Automatically generated scenes have specific prop-
erties different from the scenes manually produced.
According to the tests we made, concluding about
one algorithm efficiency with only such scenes is haz-
ardous and might provide surprisingly different re-
sults when applied to realistic scenes.

A difficult problem concerns the best parameters to
choose depending on the scene. As shown in the pre-
vious sections, the uniform grid resolution cannot be
chosen automatically. Several tests have to be per-
formed. Moreover, depending on the application, pa-
rameters can be quite different. In the case of large
buildings, it would be interesting to classify the ac-
celeration data structure using the number of triangles
and an estimation of the number of rays to cast. Then,
for each cell, a specific acceleration structure can be
employed.

When possible, large occluders should be taken
into account for subdividing the scene into cells. With
such a subdivision, cells favor data locality, the num-
ber of cells is lower and thus disk accesses are re-
duced. Consequently, the choice of an acceleration
data structure is easier. A regular grid with a resolu-
tion close to643 always produces good results.

When only a few images have to be computed, the
whole scene does not require to be processed. Alazy
acceleration structure can also be used (Poitou et al.,
2000) for avoiding the complete scene subdivision.

REFERENCES

Fradin, D., Meneveaux, D., and Horna, S. (2005). Out-of-
core photon-mapping for large buldings. InRendering
Techniques, Proceedings of Eurographics Symposium
on Rendering, pages 65–72.

Havran, V. (2000). Heuristic Ray Shooting Algorithms.
Ph.d. thesis, Czech Technical University in Prague.

Jensen, H. (2001).Realistic image synthesis using photon
mapping. A. K. Peters, Ltd.

John M. Airey, John H. Rohlf, F. P. B. (1990). Towards
image realism with interactive update rates in complex
virtual building environments.ACM Siggraph, pages
41–50.

Keller, A. and Wald, I. (2000). Efficient Importance Sam-
pling Techniques for the Photon Map. InVision Mod-
elling and Visualization 2000, pages 271–279.

MacDonald, D. J. and Booth, K. S. (1990). Heuristics for
ray tracing using space subdivision.Vis. Comput.,
6(3):153–166.

Meneveaux, D., Maisel, E., and Bouatouch, K. (1998).
A new partitioning method for architectural environ-
ments. To appear in Journal of Visualization and
Computer Animation.

Pharr, M., Kolb, C., Gershbein, R., and Hanrahan, P. (1997).
Rendering complex scenes with memory-coherent ray
tracing. InComputer Graphics (SIGGRAPH 97 Con-
ference Proceedings), pages 101–108. ACM.

Poitou, O., Bermes, S., and Lecussan, B. (2000). Laziness,
a way to improve distributed computation of the ray
tracing algorithm. InWSCG.

Sźecsi, L. (2003). An effective implementation of the k-d
tree. InGraphics programming methods, pages 315–
326, Rockland, MA, USA. Charles River Media, Inc.

Szirmay-Kalos, L., Havran, V., Balazs, B., and Szecsi, L.
(2002). On the efficiency of ray-shooting accelera-
tion schemes. InProceedings of SCCG’02 confer-
ence, Budmerice, Slovakia, pages 89–98. ACM SIG-
GRAPH.

Teller, S., Fowler, C., Funkhouser, T., and Hanrahan, P.
(1994). Partitioning and ordering large radiosity com-
putations. InComputer Graphics Proceedings, An-
nual Conference Series, pages 443–450.

Wald, I., Benthin, C., Wagner, M., and Slusallek, P. (2001).
Interactive rendering with coherent ray tracing. In
Chalmers, A. and Rhyne, T.-M., editors,Compu-
ter Graphics Forum (Proceedings of Eurographics).
Blackwell Publishers, Oxford.

Wald, I., Dietrich, A., and Slusallek, P. (2004). An Inter-
active Out-of-Core Rendering Framework for Visual-
izing Massively Complex Models. InProceedings of
Eurographics symposium on Rendering, pages 81–92.

Wald, I., Purcell, T. J., Schmittler, J., Benthin, C., and
Slusallek, P. (2003). Realtime Ray Tracing and its use
for Interactive Global Illumination. InEurographics
State of the Art Reports.

