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Abstract

Using a radiosity method to estimate light inter-reflections within
large scenes still remains a difficult task. The two main reasons are:
(i) the computations entailed by the radiosity method are time con-
suming and (ii) the large amount of memory needed is very large.
In this paper, we address this problem by proposing a new clus-
tering technique as well as a new method of visibility computation
for complex indoor scenes. Our clustering algorithm groups poly-
gons that are close to each other in each room (or corridor) of the
building. It relies on a classification method of k-mean type and al-
lows the use of several kinds of distance functions. For each group
of polygons (or cluster), we estimate the set of potentially visible
clusters with the help of openings such as doors or windows. This
computation results in a graph in which the nodes correspond to
clusters and the edges express visibility relationships between the
corresponding clusters. We use this graph for computing radiosity
in complex buildings while reducing both the amount of memory
needed and the computing time. Our global illumination method
is a MWRA (multi-wavelet radiosity algorithm). Unlike cluster-
based radiosity methods, our MWRA does not approximate (but
computes accurately) the light energy impinging or leaving a clus-
ter after multiple reflections. We provide results for 3 different test
scenes containing a high number of polygons.

CR Categories: I.3.7 [Compuer Graphics]: Three Dimensional
Graphics and Realism—Radiosity;

Keywords: architectural environments, clustering, visibility,
global illumination

1 Introduction

For a lot of reasons, the global illumination process (whatever the
technique employed), has the particularity to be very expensive in
terms of both memory resources and computing time. However, it
is possible under certain assumptions to improve the performances
of the algorithm. As an example, a viewer located in a building
containing hundreds or thousands of rooms does not see all the sur-
faces of the environment. The reason is that some major occluders
such as walls reduce the number of objects that can be seen from a
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given viewpoint. For the same reason, during lighting simulation,
a surface located in a particular room gets light flux only from (i)
the surfaces that are in the same room and (ii) those visible through
portals (say, openings such as doors, windows, etc.). This set of
surfaces is commonly called PVS (Potentially Visible Set).

To accelerate the global illumination process, the scene is usually
subdivided into groups of surfaces, a group being a set of surfaces
that are close to each other. There exists two methods for creating
these groups.

The first one consists in partitioning the scene into 3D cells
containing portals used to determine a graph expressing visibil-
ity relationships between the 3D cells. Several techniques have
been already devised for partitioning a scene. In [Teller 1992b;
T. Funkhouser and Khorramabadi 1996; John M. Airey 1990], a
BSP technique is used, providing 3D cells that can be rooms, por-
tions of rooms, corridors, portion of corridors, etc. While in [Men-
eveaux et al. 1998b], as the partitioning method used fits well with
the scene topology, the cells are exactly rooms or corridors.

The second method creates a hierarchy of clusters of surfaces.
The construction of this hierarchy relies on the use of bounding
volumes [Goldsmith and Salmon 1987; Haber et al. 2000]. For
more efficiency, 3D cells and clusters can be used together.

There exists two ways of using clusters in hierarchical radiosity.
The first one consists in approximating the light energy impinging
or leaving a cluster [Sillion 1995; Sillion and Drettakis 1995; Sil-
lion 1994; Smits et al. 1994] for accelerating radiosity to the detri-
ment of accuracy. As for the second, it computes the PVS of each
cluster and a Cluster Visibility Graph (CVG) in a preprocessing
step. This CVG makes easier visibility calculations when comput-
ing global illumination with hierarchical radiosity [T. Funkhouser
and Khorramabadi 1996; Teller et al. 1994; Funkhouser 1996]. In
this paper, we use this second approach. As will be shown in sec-
tion 7, using PVS for clusters rather than for 3D cells reduces both
the computing time and the amount of memory needed.

This paper contains two contributions in the context of hierarchi-
cal radiosity using a CVG for the reason explained above. The first
one is a new technique for constructing clusters while the second is
a fast and simple algorithm for estimating the PVS associated with
each cluster.

This paper is organized as follows. Section 2 provides an
overview of our system. Prior works concerning clustering tech-
niques and visibility processing are given in section 3. Concerning
our contribution, section 4 gives details about our clustering algo-
rithm while our visibility computations are explained in section 5.
We then discuss the radiosity algorithm (section 6) and give some
results (section 7) before we conclude (section 8).

2 Overview

Our global illumination method is multi-wavelet radiosity operating
on a scene partitioned into 3D cells (from now on, a cell represents
a room, a corridor, etc.) according to [Meneveaux et al. 1998b].
Within each cell, we construct a set of clusters using a new method
described later in the paper. A cluster visibility graph (CVG) is
computed. It gives the PVS of each cluster so that for a cluster C



within a cell R, the PVS is the set of the clusters within R and those
visible to C through portals. The PVS are computed with a new
method presented in a following section and the solution of hierar-
chical radiosity is determined according to the method described in
[Teller et al. 1994; Meneveaux et al. 1998a]. It consists, for each
cluster, in shooting (or gathering) the energy to (or coming from)
other clusters. More precisely, in a shooting approach, when a clus-
ter S shoots its energy to a cluster R, every surface of S shoots its en-
ergy to every surface of S. The approximations methods described
in [Sillion 1995; Smits et al. 1994] are not used in our algorithm.

3 Related works

The radiosity method has now become a standard for estimating
light inter-reflections within 3D environments. Since the initial
work of Goral [Goral et al. 1984], one of the major improvements
that have been proposed for reducing the computing time is the hier-
archical radiosity principle [Bouatouch and Pattanaik 1995; Gibson
and Hubbold 1996; Gortler et al. 1993; Hanrahan et al. 1991; Sil-
lion 1994; Sillion and Drettakis 1995; Smits et al. 1994]. For some
of these methods, every surface of the scene is subdivided into a
hierarchy of patches while the others make also use of a cluster hi-
erarchy for speeding up light exchanges between clusters. In this
section, we outline some techniques dealing with clustering, visi-
bility processing and cluster-based hierarchical radiosity.

3.1 Clustering

Several techniques ([Hasenfratz et al. 1999]) are commonly em-
ployed for grouping polygons or objects within an environment.
They are mostly used as a precomputation and provide a method
for fast cluster visibility culling. We classify them into the follow-
ing families :

• Spatial subdivision allows the scene to be subdivided into
voxels, which makes faster the traversal of the scene by a ray
[Amanatides and Woo 1987; Klimaszewski 1997; Cleary and
Wyvill 1988; Salam et al. 1999].

• Hierarchy of bounding volumes such as those described in
[Goldsmith and Salmon 1987; Haber et al. 2000], BSP trees
[John M. Airey 1990; Airey 1990; Teller et al. 1994; Teller
and Hanrahan 1993; Kay and Kajiya 1986; Haines and Wal-
lace 1991], octrees and quadtrees allow a multi-level repre-
sentation of the environment. They can be used for clustering
and for speeding up ray-tracing.

• Hybrid methods combine hierarchy, regular grid, non-
regular grid and bounding volumes in order to benefit from the
advantages of the above approaches (see [Cazals et al. 1995;
Snyder and Barr 1987; Gigante 1990; Müller et al. 2000]).

Basically, the criteria for constructing a hierarchy are specifically
based on the scene geometry. In most cases, the number of objects
contained in each node (or leaf) of the hierarchy is fixed by the user.
The result is a set of clusters containing almost the same number of
objects. However if this number is fixed a priori to N, when 2N
objects are close, it is impossible to automatically create only one
unique group. Moreover, if a group contains N − 1 objects, the
algorithm may insert a Nth far-off object yielding a cluster with a
large empty space.

In [Haber et al. 2000], Haber et al. propose new subdivision cri-
teria for creating a cluster hierarchy which takes the geometry into
account while constructing different size clusters. This method also
makes use of a post-processing for reorganizing the hierarchy. It
can be used in several types of global illumination for constructing

clusters composed of objects having the same photometric parame-
ters, close to each other, etc.

The clustering we propose does not need any hierarchy construc-
tion nor post-processing for solving the problems given above. It
takes into account the geometry and automatically creates clusters
of different size, composed of objects close to each other. Our
method can also consider other distance functions based on photo-
metric criteria for example. The number of objects per cluster is not
rigidly fixed and the number of clusters is automatically adapted.
The user chooses an average number of objects per cluster, but the
number of objects in each cluster can be much greater or much
lower than this average number. This only depends on the position
of the polygons within the same cluster. In this way, the empty
space in the clusters is reduced.

3.2 Visibility processing

A lot of works have been proposed in order to reduce visibility com-
putation. Basically, they rely on some preprocessing, based on the
environment geometry [Coorg and Teller 1997; Teller and Hanra-
han 1993; Teller 1992a; Drettakis and Puech 1997; Drettakis and
Fiume 1994; Chin and Feiner 1989; Haines and Wallace 1991].
Generally speaking, this kind of work proposes a means for esti-
mating a very precise visibility information between sets of objects
(polygons, clusters of polygons, etc.) and needs complex datastruc-
tures such as tubes, blockers, etc. Another approach, proposed by
Leblanc et al. [Leblanc and Poulin 2000] builds a face hierarchy for
reducing visibility computation. In this paper we propose a method
well suited for indoor environments allowing less precise but very
fast and easy visibility computations.

3.3 Global illumination for Complex scenes

3.3.1 Hierarchical Radiosity

For complex scenes, cluster-based hierarchical radiosity has been
commonly employed. This method [Smits et al. 1994; Sillion and
Drettakis 1995; Sillion 1994; Sillion 1995; Gibson and Hubbold
1996] makes use of a cluster hierarchy to accelerate radiosity by
approximating the light energy impinging or leaving a cluster to the
detriment of accuracy.

3.3.2 Indoor Scenes

J.M. Airey was the first who applied a partitioning algorithm to
complex architectural environments to represent them by a hierar-
chical datastructure [John M. Airey 1990], say a BSP tree. The
result is a set of 3D cells (rooms corridors, etc.), containing open-
ings (portals) used to compute a visibility graph (PVS). Teller et.
al. proposed improvements on visibility computation as well as
some extensions of Airey’s work [Teller et al. 1994] used in hi-
erarchical radiosity. Meneveaux et al. [Meneveaux et al. 1998b]
proposed a method that precisely extracts each room of a building
and determines their portals and the corresponding visibility graph
[Meneveaux et al. 1998a; Meneveaux and Bouatouch 1999].

Even though much work has been done to accelerate global illu-
mination for complex environments, very few of them are actually
well adapted to architectural environments.

4 Isodata Based Clustering

For constructing clusters, our method makes use of a k-mean type
classification algorithm called isodata (see [Hall and Ball 1965]).
In this section, we first describe this algorithm in 2D space for the
sake of clarity then we extend it to 3D space for constructing a set
of clusters made up of polygons.



4.1 General 2D case
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Step 1: choose N 
           barycenters

Step 2: Create
           clusters

Step 3: Recompute
           barycenters

Step 4: Repeat until
           convergence

x

: barycenter

: sample to classify

Figure 1: 2D isodata algorithm.

This classification technique uses a set of N barycenters (N being
the desired number of clusters) that move among the elements to be
classified. Let us work with 2D points on the plane for illustrating
the principle. The idea is to associate each group of points with
one of these barycenters. During the first iteration, each barycenter
is randomly placed on the plane (figure 1, step 1). Then, each 2D
point is assigned to its closest barycenter according to a distance
function, creating thus an initial set of groups (figure 1, step 2).
Then, the actual barycenter is computed for each group and replaces
the previous one (figure 1, step 3). The O(Ns)

2, once again, the
2D points are associated with their closest barycenter and so on
until convergence. In this case, convergence means the groups of
2D points do not change between two successive steps (i.e. the
barycenter has exactly the same computed position). Note that with
this algorithm, some barycenters can be associated with no element.

4.2 Convergence issues

It is known that this algorithm may give rise to oscillations with
low magnitudes meaning that the convergence criterion is never
met. An oscillation corresponds to a situation in which one or
more elements to be classified move from one cluster to another
continuously. In the case of polygon classification, when this situa-
tion takes place, the clusters already meet the classification criterion
based on the distance function. This means that as soon as we get
an oscillation, we can stop the classification process. From our ex-
periments, when convergence is met, the classification algorithm
needs less than 5 iterations. Practically, we stop the classification
algorithm after 10 iterations which allow to interrupt a situation of
oscillation.

4.3 Extension to 3D polygons

Our aim is to extend this classification technique to 3D polygons.
Therefore, we have to define a function giving the distance between
a polygon and a barycenter (of a cluster of polygons). This distance
function can be any function relying on geometry or photometry
(BRDF, colors, textures, etc.).

Our classification algorithm is given in figure 2. We need to spec-
ify (i) the notion of barycenter associated with a cluster of polygons,
(ii) a function giving the distance between a barycenter and a poly-
gon and (iii) a technique that computes the barycenter of a cluster.

In this algorithm, convergence is met as soon as the groups (clus-
ters in our case), determined at two successive steps, are similar.

Another problem concerns the number of barycenters (or clus-
ters). The user chooses an average number of polygons in a cluster
Nave. If Nt is the total number of polygons, the number of barycen-
ters Ng is calculated as : Ng = Nt/Nave.

We can use different functions expressing the distance between
a polygon and a barycenter (a 3D point). These functions are :

• Closest vertex : It chooses the distance between the barycen-
ter and the closest vertex of the polygon.

• Barycenter : Determines the distance between the barycen-
ter and the polygon barycenter.

• Orthogonal : Computes the orthogonal distance between the
barycenter and the polygon plane.

• Volume increase : This distance proposed in [Goldsmith and
Salmon 1987] favors the smallest bounding box volume in-
crease.

The figure 11 gives an example of the clusters obtained with dif-
ferent average sizes of clusters.

Polygon **K-MEANS(Ng, Np, Polygon polygons[ ]) {
integer Ng; /* Number of clusters */

integer Np; /* Number of polygons to classify */

Point3D Rk [Ng],Rk−1[Ng]; /* Barycenters */

Polygons C[Ng][Np]; /* Clusters, Ng = Number of clusters */

integer J, i, j, k;
Real D, d[Np] ; /* d[i] : distance between a polygon i and a barycenter */

/* Randomly choose a barycenter for each cluster */

Rk = RandomChoice(N, polygons);
Rk−1 = O;

While Rk 6= Rk−1 do {

/* For each polygon */

For i = 1 to Np do {
D = + INFINITY;

/* For each barycenter */

For j = 1 to Ng do {
d[i] = Distance(Rk [ j],polygons[i]);
/* Memorize the smaller distance and the corresponding cluster */

if (d[i] < D) then D = d[i] ; J = j;
}

/* j is the group index corresponding to */

/* the barycenter closest to polygons[i]. C[J] is the Jth cluster */

AddPolygonGroup( polygons[i], C[J] );
}

/* The new barycenters are computed */

Rk−1 = Rk;
/* Compute the barycenter for the jth cluster */

For j = 1 to N do Rk [ j] = barycenter(C[j]);
}
return C;

}

Figure 2: K-means algorithm. The function AddPolygonGroup in-
serts the polygon i into the group J, while the function Barycenter
computes the new barycenter associated with the group j.

Among the distance functions we used, the closest vertex and
the barycenter distances provide clusters without any large empty
space. The orthogonal distance does not provide good results since
it is not based on the polygon vertices and the algorithm may group
several far-off polygons. The last distance function (volume in-
crease) is very sensitive to choice of the initial barycenters. In most
cases it provides large clusters with few polygons.

Let us recall that the algorithm works as well with any other
distance function. For example, we could create, as in [Funkhouser
1996], clusters of polygons depending on the form factors values.

Another advantage of our method is that the number of clusters
may eventually be lower than the number of barycenters (say some
of them can be associated with no polygon), which efficiently re-
duces the number of clusters when several polygons are located in
a small subspace.



4.4 Improvements

For each cluster, created with the method described above, we es-
timate a PVS corresponding to all the clusters potentially visible in
the building. Therefore, we construct a bounding box enclosing the
cluster. Obviously, when the bounding box is large, so is its PVS.
A cluster can have a large size even though it is composed of hun-
dreds of small polygons very close to each other and only one large
polygon (see figure 3). This is why we propose to keep in sepa-
rate clusters the polygons whose smaller edge is larger than a given
threshold (1 meter in our program).

Cluster with a large polygon The large polygon has been isolated

Figure 3: Problem of large polygons.

4.5 Hierarchy construction

One original feature of our clustering method is that it constructs
clusters while sparing any cluster hierarchy. However, our clas-
sification algorithm can be easily modified for creating a cluster
hierarchy as explained hereafter. In this case, a leaf of the cluster
hierarchy is a cluster while an internal node is a group of clusters
that are close to each other according to the chosen distance func-
tion. To create a cluster hierarchy, again we can use the isodata
algorithm as explained below. Indeed, a node of a cluster hierarchy
may have N children (figure 4, with N = 2). N can even be modified
at each level.

For complex scenes, the clustering method can be very expen-
sive since the number of elements to be classified is high. The al-
gorithm complexity depends on the number of barycenters and on
the number of elements to be classified as well. If Nb is the number
of barycenters and Ns the number of elements, there are Nb ×Ns
distance computations, with Nb = Ns/Ag, where Ag is the average
number of polygons per cluster. Consequently, our algorithm com-
plexity is of O(Ns)

2 and compared to the algorithm provided by
Goldsmith and Salmon [Goldsmith and Salmon 1987], our method
is slower for large sets of objects. However, since clustering is per-
formed for each room in the building the computing time is low.
Moreover the construction of a cluster hierarchy easily reduces this
complexity down to O(Ns.log(Ns)).

Isodata with 2 barycenters
...

...

...

...

Figure 4: Hierarchy construction with N = 2. For each node, two
barycenters (represented by black dots) are chosen.

As an example, we use a binary tree for representing a cluster
hierarchy. The first step of the construction of a cluster hierarchy
consists in associating all the clusters with the root of the hierarchy.
Then, two barycenters are randomly chosen among the clusters and
the k-mean algorithm can be directly applied with the clusters as
elements to be classified. Every resulting group of clusters is as-
sociated with one child of the root and this process is recursively
applied to the children nodes in turn.

For storage improvements, the list of clusters and their associated
polygons are stored only at the leaves of the hierarchy. This avoids
the existence of multiple copies of polygons at the internal nodes.

The figure 14 shows the cluster hierarchy for one room. The
objects drawn in red correspond to the part of the hierarchy which
is encircled. Let us recall that the leaves hierarchy are clusters.

5 Visibility

In this section, we describe our visibility algorithm. It makes use
of constructed clusters and relies on the room portals. Compared to
the algorithm proposed by S. Teller in [Teller 1992b], our method
is less precise, but very fast and easier to implement.

5.1 Visibility computation

In the same room, we suppose that every cluster can potentially
exchange light with every other cluster. Let us consider a cluster C
in a room Ra. The problem is to determine the set of clusters visible
to C (the PVS) through each portal of Ra (figure 5).

Cluster C

Ra

Rb

Rc

Rd

Pa

Pb1

Pb2

Figure 5: Subspace visible to the cluster C through the portals Pa,
Pb1 and Pb2.

With this aim in view, we associate a bounding box with C. For
determining the set of clusters visible to it, we compute the sub-
space potentially visible (Sv) to any 3D point of C through each
portal Pi of Ra. When a portal is a rectangle, the supporting plane
of which is perpendicular to the ground plane (for us the (x,y) plane
of the world coordinate system), this volume is a pyramid made up
of 4 half-spaces. Each half-space boundary is a plane that shares
one edge with the bounding box of C and one edge with the portal
(figure 6). Those edges are coplanar since they are either aligned
with one of the 3 axes of the world coordinate system or contained
in a plane parallel to (x,y). If the portal is not a rectangle, we con-
sider the portal bounding box. This assumption only enlarges the
visibility volume and adds a few clusters to the visibility set of C.

upper view

room

portal

cluster

3d view

portal

cluster

subspace visible to C through a portal

Figure 6: Cluster visibility through one portal. The dark area rep-
resents the subspace visible to C through the room portals

The portal Pa is also contained in an adjacent room Rb. The
volume Sv contains all the clusters within Rb that are visible to C.
Since we are working with convex volumes and half-spaces, finding
the clusters inside Sv is a simple task.



Once the clusters, within the adjacent room Rb are determined,
it is possible that the visibility volume Sv contains other portals
leading to other rooms (for example Pb1 and Pb2 in figure 5). In
this case, we update the visibility volume through each new portal
(for example Rd and Rc) by recursive a application of the process
described above (see figure 6). This is in fact a recursive search
through all the rooms that are actually visible to the given cluster.
The figure 13 shows a cluster (in red) and its PVS (in green on the
left and dark blue on the right).

The visibility computation is performed for each cluster of each
room. The result (PVS) is a graph where each vertex corresponds
to a cluster and each edge to visibility relationships between the
corresponding clusters. For this computation, we consider that an
edge corresponds to potentially visible clusters. A more precise
visibility estimation is made during the radiosity computation for
determining patch-to-patch visibility.

6 Radiosity method

As a global illumination system, we use a multi-wavelet radiosity
algorithm [Meneveaux et al. 1998a] without any cluster hierarchy
nor cluster-based approximations used in [Sillion 1995; Smits et al.
1994]. The initial polygons are recursively divided into surface
elements depending on a visibility criterion and an area threshold
given by the user. A shooting method is used where each surface
element within the selected emitting cluster CE shoots its light flux
to all the visible surface elements belonging to the clusters within
the PVS of CE .

global illumination() {
typedef struct CLUSTER FLAGS {

boolean In Memory;
boolean To Be Used;

} ;
Integer C; /* Cluster identifier */
CLUSTER FLAGS Cluster In Memory[number of clusters];
ITERATION = 0;

/* VG is the visibility graph */
VG = Read Visibility Graph From Disk();
Initialize(Cluster In Memory[ ]);
While not (convergence) AND (IT ERAT ION < Max Iterations) {

Unmark All The Clusters();
/* Choose the first shooting cluster */

C = Choose Cluster(V G, IT ERAT ION,Cluster In Memory);
/* Choose Cluster() modifies Cluster In Memory[ ] */

Mark Cluster(C);
/* The cluster C is marked during the current iteration */

while not (all the clusters are marked) {
/* The cluster C shoots now its energy */

Shoot From Cluster(C,Cluster In Memory);
/* Choose a shooting cluster which has not already */
/* shot its energy during this iteration */

C =Choose Cluster(V G, IT ERAT ION,Cluster In Memory);
Mark Cluster(C);

}
IT ERAT ION = IT ERAT ION +1;

}
}

Figure 7: Global radiosity algorithm. The function Choose Cluster
selects the cluster according to the used ordering strategy. The func-
tion Initialize sets the radiosity parameters for all the polygons in-
side the clusters.

To handle very complex scenes, we have used different ordering
strategies described in [Meneveaux et al. 1998a]. The role of an or-
dering strategy is to select a cluster (or a cell) as emitter, download
it together with its PVS, then shoot its energy toward the clusters
(or cells) within its PVS. As the whole scene cannot fit in memory,

an ordering strategy allows to maintain in memory only a small
portion of the scene. The ordering strategies we have used are the
following :

• The first strategy (random) randomly selects one cluster or
cell ;

• The second, called Max Energy selects the cluster (or cell)
that has the most unshot energy ;

• The Greedy algorithms selects the room that entails the min-
imum of disk access. For the Greedy S the disk accesses are
given in polygons while for the Greedy C this number is given
in clusters (or cells).

• Backtrack algorithms (we have implemented 2 algorithms
called Bactrack S and Bactrack C) provide disk access es-
timations of medium range term. Therefore, the algorithms
construct a tree (of depth equal to 5) of all the solutions and
selects the best path. The disk accesses are given in polygons
for the (backtrack S) and in clusters (or cells) for the (back-
track C).

• The Traveling Salesman choice needs a precomputation for
estimating the best path passing through all the clusters (or
cells) or the nodes of the visibility graph.

7 Results

The results provided in this section have been obtained with a Sili-
con Graphics R10000 processor, with 380 Mb of memory.

For our tests, the average number of polygons per cluster is 50.
Let us recall that a cluster does not contain necessarily 50 polygons
(see section 4).

The first test scene is a 3 floors building containing 648 rooms
(figure 15 and table 9). Details on our multi wavelet hierarchical
radiosity as well as the file formats and datastructure used can be
found in [Meneveaux et al. 1998a].

RND ME GS GC BS BC TS

Cells (rooms) 112h54 132h34 100h46 79h16 108h36 97h12 56h30

Clusters 7h36 9h20 5h21 4h39 45h54 32h30 several days

Figure 8: Computing time with and without clusters for 7 ordering
strategies : RND = Random, ME = Max Energy, GS = Greedy
S, GC = Greedy C, BS = Backtrack S, BC = Backtrack C, TS =
Traveling Salesman

The table 8 gives the computing time for this scene and for 7 or-
dering strategies. In this table, we can remark that when choosing
clusters as emitting groups of polygons rather than cells, the com-
puting time are from far lower, except with the traveling salesman
ordering strategy. This can be explained by the fact that the visibil-
ity graph contains a high number of nodes (4759 clusters say 4759
nodes). With this strategy, the traversal of this graph, for determin-
ing the optimal path visiting all the graph nodes, requires a high
computing time.

In what follows, the results have been obtained with the Greedy
C ordering strategy since it is the most efficient. Moreover, the
shooting groups of polygons are clusters.

We have modeled two buildings. The first one, named Labyrinth
(figure 16), is made up of 182 rooms and 146266 input polygons.
The second building is called Octogon and is composed of 28 rooms
and a total of 277942 polygons. In this last scene, the number of
rooms is low (see figure 12) but each room contains a high number



of polygons (some rooms contain more than 60 000 polygons). In
this case, as the number of rooms is low and the rooms contain
a high number of polygons, the PVS of a cluster contains a high
number of polygons. Let us recall that partitioning a scene into
cells allows to reduce the time needed for computing clusters. But
if the number of polygons in each cell is high, the computing time
for clustering still remains high since it is not possible to benefit
from the partitioning operation. In this case, the PVS requires a
huge amount of memory, which limits our hierarchical radiosity
algorithm practically as seen in table 10.

total # of clustering # of visibility

# polygons rooms time clusters time

Test Scene 58 608 648 15 s 4 759 39 s

Labyrinth 146 266 182 69 s 16 610 60 s

Octogon 277 942 28 120 mn 21 s 3 690 20 s

Figure 9: Used memory and Computing time for the Greedy C
Strategy.

The table 9 provides, for the 3 test scenes, the computing time
for clustering the polygons, the computing time for visibility calcu-
lation as well as the number of clusters obtained. For the scene
Octogon, the number of clusters is low because many polygons
are small, close to each other and assigned to a same cluster. This
proves the advantage of our clustering method.

total estimated memory rad/room memory rad/clusters

# polygons memory w/ rooms time w/ clusters time

Test Scene 58 608 3 Gb 300 Mb 79h16 70 Mb 4h39

Labyrinth 146 266 7.3 Gb 1.5 Gb – 250 Mb 45h06

Octogon 277 942 13.9 Gb 7.3 Gb – 5.7 Gb –

Figure 10: Used memory and Computing time for the Greedy C
Strategy. Some computations (represented by -) have not been per-
formed because of the large memory needed that was not available
on our computer.

With our radiosity algorithm, only a subpart of the scene needs to
be stored in memory. Actually, the maximum number of polygons
that have to be present in memory during the whole process cor-
responds to the number of polygons contained in the largest PVS.
With the test scene, the largest cell PVS contains 3250 polygons,
while the largest cluster PVS contains only 808 polygons. Concern-
ing the Labyrinth, the largest cell PVS contains 25000 polygons
and the largest cluster PVS contains 3973 polygons. Finally, for
the Octogon this number of polygons is 146286 for the largest cell
PVS and 114542 for the largest cluster PVS. The results in terms of
memory given in the table 10 are estimates. Note that the memory
size also strongly depends on the number of surface elements.

We can see in the table 9 that for the scene Octogon the time
needed for computing the clusters gets high compared to those cor-
responding to the other scenes. In addition, as the scene Octogon
contains a high number of polygons in each cell (room), the size
of the PVS is high in terms of number of polygons and so is the
amount of memory needed for storing them (see table 10). For
scenes similar to the Octogon, cluster-based hierarchical radiosity
such as [Sillion 1995; Sauvée 1994] are preferred. Anyway, our
methods for clustering and computing visibility are fast and effi-
cient as seen in the table 9.

The table 10 shows that the use of clusters improves radiosity
computations drastically, without any loss of precision. However, if
the rooms contain a high number of polygons, the PVS still remains
high.

8 Conclusion and future works

Solving the radiosity equation for large scenes is time consuming
and needs a huge amount of memory. In this paper, we have pro-
posed solutions allowing to reduce the number of polygons stored
in memory by using clusters of polygons. Our algorithms have
been devised for large buildings, composed of several hundreds
of rooms. We have first described a clustering method based on
a k-mean type algorithm called isodata, taking into account any
distance function, based on either geometric or photometric crite-
ria. We have also shown how to construct a cluster hierarchy with
only few modifications of the algorithm. Our second contribution
concerns a fast and simple technique for determining the set of po-
tentially visible clusters associated with each cluster in the environ-
ment. This technique uses the bounding box enclosing the poly-
gons of the cluster as well as the portals (doors or windows) of the
buildings. The results show that with our approach it is possible to
drastically reduce both the computing time and the amount of used
memory.
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Figure 11: 5, 10, 50, 150 polygons per group, with the barycenter
distance. The cluster bounding box is drawn in red as well as the
polygons it contains.

Figure 12: Clusters with a high number of polygons.

Figure 13: Clusters visible (in green on the left and blue on the
right) from one cluster (in red) in the whole building. Note that the
whole rooms are not visible, but the floors, ceilings and walls are
also taken into account.

Figure 14: Resulting hierarchy for one room.

Figure 15: Images of the test scene.

Figure 16: Images of the Labyrinth.

Figure 17: Images of the Octogon.


