Logo XLIM

Site de Poitiers



Pascal LIENHARDT

 
Statut :Professeur
Equipe :Informatique Graphique
Email :
Téléphone :+33 (0)5 49 49 65 75
Télécopie :+33 (0)5 49 49 65 70
  
Bureau :2/E97
Laboratoire XLIM
UMR CNRS 7252
Bât. SP2MI, Téléport 2,
11 Bd Marie et Pierre Curie, BP 30179
86962 Futuroscope Chasseneuil Cedex
France

En modélisation géométrique à base topologique, un objet géométrique est défini par une structure combinatoire décrivant sa topologie et par un "modèle de plongement" décrivant sa forme. Cette distinction "topologie / plongement" s'est révélée fructueuse tant en ce qui concerne les bases théoriques, qui s'appuient sur la topologie algébrique, que pour la conception de bases logicielles, et pour des applications comme la C.A.O., la modélisation du sous-sol et l'animation.

Un cadre général a été défini, basé sur la notion d'ensembles simpliciaux, pour la définition de structures simpliciales, simploïdales (dont les cellules sont des produits cartésiens de simplexes) et cellulaires (extensions de la notion de carte combinatoire). Les travaux actuels concernent la conversion de modèles et d'opérations de base (produit cartésien par exemple), ainsi que le calcul de propriétés topologiques (groupes d'homologie et générateurs, par exemple).

Recherche

Mot(s) clé(s)

Informatique géométrique et graphique ; modélisation géométrique à base topologique ; structures et opérations topologiques (cartes généralisées, etc) ; applications en CAO, modélisation du sous-sol, animation, imagerie

Travaux en cours

  • optimisation du calcul de propriétés topologiques (e.g. groupes d'homologie) pour ces différentes structures ;
  • généralisation d'opérations classiques en modélisation géométrique et application à la conception de noyaux de modeleurs géométriques spécialisés, pour la C.A.O., la modélisation du sous-sol,la simulation d'évolutions de couches géologiques, etc
  • extension du cadre général de définition de structures combinatoires pour la définition de structures hiérarchiques ; application à la modélisation d'environnements architecturaux complexes et à l'imagerie

Projets

Proposition de sujet de Stage Master Recherche 2016-2017 (poursuite en thèse possible)

Titre : Contrôle topologique d'évolutions d'objets géométriques

Encadrant(s) : S. Alayrangues, P. Lienhardt, S. Peltier

Mots clés : Modélisation géométrique, animation, cartes combinatoires, homologie

Sujet : Ce sujet s'inscrit en informatique graphique, et connaît des applications en modélisation géométrique et en animation. La construction d'un objet géométrique, en utilisant un logiciel de modélisation géométrique, nécessite de contrôler l'objet au cours de sa construction. Par exemple, dans un processus de Conception et Fabrication Assistée par Ordinateur, il ne serait pas possible de fabriquer un objet 3D dont le bord serait une surface non orientable. De plus, il est nécessaire de détecter les éventuels problèmes de construction le plus tôt possible : il est donc intéressant de contrôler le résultat obtenu à chaque application d'une opération de construction. Une problématique similaire se pose en animation, où l'on a besoin de vérifier si la structure d'un objet a été modifiée entre deux pas de temps.

Les caractéristiques homologiques d'un objet donnent un certain nombre d'informations topologiques (structurelles) utiles pour un tel contrôle. En particulier si l'objet modélisé est subdivisé en sommets, arêtes, faces, volumes (comme un maillage, par exemple), l'homologie peut se calculer incrémentalement pour certaines opérations géométriques (collage / décollage de faces, par exemple) : en d'autres termes, si l'on connaît les caractéristiques homologiques de l'objet avant l'application de l'opération, on peut en déduire de manière efficace les caractéristiques homologiques après l'application de l'opération.

Le but général suivi durant ce stage (qui pourra se prolonger en thèse) est :

  • d'implanter le processus de calcul incrémental pour deux types d'objets subdivisés: les ensembles simploidaux, où les cellules de l'objet ont une structure régulière, et les cartes combinatoires, où les cellules de l'objet peuvent être plus générales ;
  • de mener une étude expérimentale de la complexité des calculs, en particulier par rapport à d'autres méthodes plus classiques où toute l'information homologique est recalculée globalement à chaque étape de construction. Pour cela, il sera nécessaire d'implanter aussi une méthode de calcul "classique" afin d'effectuer les comparaisons ;
  • d'effectuer une expérimentation approfondie dans le cadre de la simulation de gestes chirurgicaux.

Bibliographie :

  • "Simploidal sets : definitions, operations and comparison with simplicial sets". S. Peltier, L. Fuchs, P. Lienhardt. Discrete Applied Mathematics, Vol. 157, January 2009, pp. 542-557.
  • "Combinatorial maps: efficient data structures for computer graphics and image processing". G. Damiand, P. Lienhardt. A K Peters/CRC Press, September 2014, 404 p.
  • "Homology of cellular structures allowing multi-incidence". S. Alayrangues, G. Damiand, P. Lienhardt, S. Peltier. Discrete and Computational Geometry, Vol. 54, n° 1, July 2015, pp. 42-77.
  • "Incremental computation of the homology of generalized maps: an application of effective homology results". S. Alayrangues, L. Fuchs, P. Lienhardt, S. Peltier. Rapport de recherche XLIM-SIC, 2015.

Lieu du stage : Poitiers

Contact : Pascal Lienhardt (pascal.lienhardt@univ-poitiers.fr, 05 49 49 65 75)

Enseignements

Matière(s) enseignée(s)

  • structures de données, algorithmique, programmation
  • compilation
  • bases de données
  • algorithmique des graphes
  • informatique graphique

Publications saisies sur le serveur HAL -- Laboratoire XLIM ou SIC

Liste complète des publications de Pascal Lienhardt pour le laboratoire XLIM ou SIC

Dernière mise à jour le 01/09/2015 à 10:58:22

Nombre total de publications : 18

Article dans des revues

[ART-006]Simploidals sets: Definitions, Operations and Comparison with Simplicial Sets
Samuel Peltier, Laurent Fuchs, Pascal Lienhardt.
Discrete Applied Mathematics, Elsevier, 2009, 157, pp.542--557. <10.1016/j.dam.2008.05.032>
[ART-005]Equivalence between Closed Connected n-G-Maps without Multi-Incidence and n-Surfaces.
Sylvie Alayrangues, X. Daragon, Jacques-Olivier Lachaud, Pascal Lienhardt.
Journal of Mathematical Imaging and Vision, Springer Verlag (Germany), 2008, Vol.32, p.1-22
[ART-004]Homologie des ensembles simploïdaux
Samuel Peltier, Laurent Fuchs, Pascal Lienhardt.
Revue Technique et Science Informatiques, Hermes, 2006, 25 (6), pp.791--813. <10.3166/tsi.25.791-813>
[ART-003]A Hierarchical Topology-Based Model for Handling Complex Indoor Scenes
David Fradin, Daniel Meneveaux, Pascal Lienhardt.
Computer Graphics Forum, Wiley-Blackwell, 2006, 25 (2), pp.149--162
[ART-002]PDFnD generalized map pyramids: definition, representations and basic operations
Carine Grasset-Simon, Guillaume Damiand, Pascal Lienhardt.
Pattern Recognition, Elsevier, 2006, 39 (4), pp.527-538. <10.1016/j.patcog.2005.10.004>
[ART-001]PDFRemoval and contraction operations to define combinatorial pyramids: application to the design of a spatial modeler
Guillaume Damiand, Martine Dexet, Pascal Lienhardt, Eric Andres.
Image and Vision Computing, Elsevier, 2005, 23 (2), pp.259-269. <10.1016/j.imavis.2004.06.016>

Communication dans un congrès

[COMM-005]Border operator for generalized maps
Sylvie Alayrangues, Samuel Peltier, Guillaume Damiand, Pascal Lienhardt.
Discrete Geometry for Computer Imagery, Sep 2009, Montreal, Canada. 5810, pp.300--312, 2009, Lecture Notes in Computer Science
[COMM-004]Homology Computation on Cellular Structures in Image Context
Sylvie Alayrangues, Guillaume Damiand, Laurent Fuchs, Pascal Lienhardt, Samuel Peltier.
Computational Topology in Image Context, Aug 2009, St. Kathrein/Offenegg, Austria. pp.19--28, 2009
[COMM-003]Homology of simploidal sets
Samuel Peltier, Laurent Fuchs, Pascal Lienhardt.
Discrete Geometry for Computer Imagery, Oct 2006, Szeged, Hungary. 4245, pp.235--246, 2006
[COMM-002]Topological Map: An Efficient Tool to Compute Incrementally Topological Features on 3D Images
Guillaume Damiand, Samuel Peltier, Laurent Fuchs, Pascal Lienhardt.
International Workshop on Combinatorial Image Analysis, Jun 2006, Berlin, Germany. 4040, pp.1--15, 2006, Lecture Notes in Computer Science. <10.1007/11774938_1>
[COMM-001]Partition de l'espace et hiérarchie de cartes généralisées : application aux complexes architecturaux
David Fradin, Daniel Meneveaux, Pascal Lienhardt.
AFIG, Dec 2002, France. 2002

Ouvrage (y compris édition critique et traduction)

[OUV-001]Combinatorial Maps: Efficient Data Structures for Computer Graphics and Image Processing
Guillaume Damiand, Pascal Lienhardt.
A K Peters/CRC Press, 2014, 9781482206524. <http://www.crcpress.com/product/isbn/9781482206524/>

Chapitre d'ouvrage

[COUV-002]PDFCombinatorial models for topology-based geometric modeling
Pascal Lienhardt, Laurent Fuchs, Yves Bertrand.
G. Di Maio, S. Naimpally. Theory and applications of proximity, nearness and uniformity, Quaderni di matematica, dipartimento di matematica, seconda universita di Napoli, pp.151-198, 2009
[COUV-001]PDFModèles topologiques
Pascal Lienhardt, Laurent Fuchs, Yves Bertrand.
Informatique graphique, modélisation géométrique et animation, Lavoisier, pp.49-93, 2007

Autre publication

[OTHER-001]Cartes Combinatoires Ouvertes
Mathieu Poudret, Agnès Arnould, Yves Bertrand, Pascal Lienhardt.
Rapport de recherche SIC. 2007

Pré-publication, Document de travail

[UNDEFINED-001]PDFExtracting cell complexes from digital images
Ana Maria Pacheco Martinez, Pascal Lienhardt, Pedro Real Juarez.
2014

Rapport

[REPORT-002]PDFA Boundary Operator for Computing the Homology of Cellular Structures
Sylvie Alayrangues, Guillaume Damiand, Pascal Lienhardt, Samuel Peltier.
2011
[REPORT-001]Hierarchy of Generalized Maps for Modeling and Rendering Complex Indoor Scenes
David Fradin, Daniel Meneveaux, Pascal Lienhardt.
2005

Publications saisies sur le serveur SIC

Liste complète des publications de Pascal Lienhardt pour le laboratoire SIC (antérieures à 2007)

Revues Internationales

[10] A Hierarchical Topology-Based Model for Handling Complex Indoor Scenes
      Fradin D., Meneveaux D., Lienhardt P.
      Computer Graphics Forum, Volume 25, Number 2, pages 149--162 - June 2006  ps 

[9] nD generalized map pyramids: definition, representations and basic operations
      Simon C., Damiand G., Lienhardt P.
      Pattern Recognition, Volume 39, Number 4, pages 527-538 - April 2006  ps 

[8] Removal and contraction operations to define combinatorial pyramids: application to the design of a spatial modeler
      Damiand G., Dexet-Guiard M., Lienhardt P., Andres E.
      Image and Vision Computing, Volume 23, Number 2, pages 259-269 - February 2005  ps 

[7] Automatic building of structured geological models
      Brandel S., Schneider S., Perrin M., Guiard N., Rainaud Jf, Lienhardt P., Bertrand Y.
      Journal of Computing and Information Science in Ingeneering, Volume 5, numéro 2 - 2005

[6] Cartesian product of simplicial and cellular structures
      Lienhardt P., Skapin X., Bergey A.
      International Journal on Computational Geometry and Aplications, Volume 14, Number 3, pages 115-159 - Juin 2004

[5] Using Cartesian Product for Animation
      Skapin X., Lienhardt P.
      Journal of Visualization and Computer Animation, Vol. 12, n° 3, pp. 131-144 - 2001

[4] Cellular complexes as structured semi-simplicial sets
      Elter H., Lienhardt P.
      International Journal of Shape Modeling, Vol. 1, n° 2, pp 191-217 - 1995

[3] N-dimensional generalized combinatorial maps and cellular quasi-manifolds
      Lienhardt P.
      International Journal on Computational Geometry and Applications, Vol. 4, n° 3, pp. 275-324 - 1994

[2] Modelling and programming evolutions of surfaces
      Chen X., Lienhardt P.
      Computer Graphics Forum, Vol. 2, no. 5 - 1992

[1] Topological models for Boundary Representation : a comparison with n-dimensional generalized maps
      Lienhardt P.
      Computer-Aided Design, Vol. 23, no.1, pp. 59-82 - 1991

Revues Nationales

[2] Homologie des ensembles simploïdaux
      Peltier S., Fuchs L., Lienhardt P.
      Technique et Science Informatiques, Volume 25, Number 6, pages 791--813 - Septembre 2006

[1] Subdivisions de surfaces et cartes généralisées de dimension 2
      Lienhardt P.
      RAIRO Informatique Théorique et Applications, Vol. 25, no. 2, pp. 171-202 - 1991

Conférences Internationales avec Comité de Lecture

[30] Homology of simploidal sets
      Peltier S., Fuchs L., Lienhardt P.
      Discrete Geometry for Computer Imagery (DGCI 2006), Volume 4245, pages 235--246 - October 2006

[29] Topological Map: An Efficient Tool to Compute Incrementally Topological Features on 3D Images
      Damiand G., Peltier P., Fuchs L., Lienhardt P.
      Proceedings of 11th International Workshop on Combinatorial Image Analysis, Volume 4040, pages 1-15 - June 2006  ps 

[28] Receptive Fields for Generalized Map Pyramids: The Notion of Generalized Orbit
      Simon C., Damiand G., Lienhardt P.
      Proceedings of 12th Discrete Geometry for Computer Imagery, Volume 3429, pages 56-67 - April 2005  ps 

[27] Pyramids of n-Dimensional Generalized Maps
      Simon C., Damiand G., Lienhardt P.
      Proceedings of 5th IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition, Volume 3434, pages 142-152 - April 2005  ps 

[26] Equivalence between regular n-G-maps and n-surfaces
      Alayrangues S., Daragon X., Lachaud J.-O., Lienhardt P.
      10th Int. Workshop on Combinatorial Image Analysis, Auckland, Nouvelle-Zélande, 15p. - Décembre 2004

[25] Automatic building of structured geological models
      Bertrand Y., Lienhardt P., Guiard N., Brandel S., Schneider S., Perrin M., Rainaud Jf
      ACM Symposium on Solid Modeling, Gênes, Italie, pp. 59-69 - Juin 2004

[24] Removal and Contraction for N-Dimensional Generalized Maps
      Damiand G., Lienhardt P.
      Procedings of 11th Discrete Geometry for Computer Imagery, Volume 2886, pages 408-419 - November 2003  ps 

[23] Removal and contraction for n-dimensional generalized maps
      Damiand G., Lienhardt P.
      Proceedings of the Computer Vision Winter Workshop, pages 208-221 - February 2002

[22] SpaMod: design of a spatial modeler
      Andres E., Breton R., Lienhardt P.
      Digital and Image Geometry, advanced lectures, Volume LNCS vol.2243, pages 90--107 - 2001

[21] Using cartesian prodcut for animation
      Skapin X., Lienhardt P.
      Computer Animation and Simulation, pages 187-201 - August 2000

[20] A course in Topology-based Geometric Modeling
      Lienhardt P., Fuchs L., Bertrand Y.
      Eurographics Workshop on Graphics and Visualization Education, pages 39-44 - 1999

[19] Topological structures for d-dimensional free-form objects
      Fuchs L., Lienhardt P.
      Proc. of CAGD'97, Lillehammer, Norvège - 1997

[18] Cartesian product of simplicial sets
      Lang V., Lienhardt P.
      Proc. of WSCG'97, Plzen, Czech Republic - 1997

[17] Aspects in Topology-Based Geometric Modeling
      Lienhardt P.
      Discrete Geometry and Computer Imagery (DGCI 1997), Volume 1347, pages 33-48 - 1997

[16] Simplicial sets and triangular patches
      Lang V., Lienhardt P.
      Proc. of CGI'96, Pohang, Corée - 1996

[15] Quelques structures et constructions en modélisation topologique
      Lienhardt P.
      "Images de synthèse et applications", 8° entretiens du Centre Jacques Cartier - 1995

[14] A study of basic tools for simulating metamorphoses of subdivided 2D and 3D objects. Application to the internal growing of wood and to the simulation of the growing of fishes.
      Terraz O., Lienhardt P.
      Computer Animation and Simulation, pages 104-129 - 1995

[13] Geometric Modeling with Simplicial Sets
      Lang V., Lienhardt P.
      Computer Graphics and Applications, pages 475-494 - 1995

[12] Algebraic specification and development in geometric modeling
      Bertrand Y., Dufourd J.-F., Françon J., Lienhardt P.
      TAPSOFT'93, Orsay, France - Avril 1993

[11] Some aspects of a method for programming metamorphoses of any subdivisions of any surfaces
      Terraz O., Lienhardt P.
      Compugraphics'93, Alvor, Portugal - Avril 1993

[10] Different combinatorial models based on the map concept for the representation of different types of cellular complexes
      Elter H., Lienhardt P.
      Proc. of IFIP TC 5 WG II Working Conference on Geometric Modeling in Computer Graphics, in Modeling in Computer Graphics, pages 193-212 - 1993

[9] Modélisation volumique à base topologique
      Bertrand Y., Dufourd J.-F., Françon J., Lienhardt P.
      Proc. of MICAD'92, pages 59-74 - 1992

[8] Extension of the notion of map for the representation of the topology of cellular complexes
      Elter H., Lienhardt P.
      4th Canadian Conference on Computational Geometry - 1992

[7] Barycentric triangulation of generalized maps
      Lienhardt P.
      2nd Canadian Conference on Computational Geometry - 1990

[6] Subdivisions of surfaces and generalized maps
      Lienhardt P.
      Eurographics'89, Hambourg, Allemagne, pp. 439-452 - Septembre 1989

[5] Subdivisions of n-dimensional spaces and n-dimensional generalized maps
      Lienhardt P.
      ACM Symposium on Computational Geometry, Saarbrücken, Allemagne, pp. 228-236 - Juin 1989

[4] 2-G-Maps : a model for the manipulation of general 2-dimensional subdivisions
      Lienhardt P.
      Proc. of International Conference on Computer-Aided Design and Computer Graphics - 1989

[3] Free-form surfaces modeling by evolution simulation
      Lienhardt P.
      Eurographics'88, Nice, France, pp. 327-341 - Septembre 1988

[2] Extension of the notion of map and subdivisions of a 3D space
      Lienhardt P.
      5° symposium on Theoretical Aspects in Computer Science, Bordeaux, France, LNCS 294, pp. 301-311 - Février 1988

[1] LECM : un langage de programmation d'évolutions de surfaces libres
      Lienhardt P.
      proc. of PIXIM'88, pages 243-261 - 1988

Conférences Nationales avec Comité de Lecture

[1] Synthèse d'images de feuilles végétales
      Lienhardt P., Françon J.
      Actes du 3ème colloque Image - 1987

Conférences Nationales sans Comité de Lecture

[2] Homologie des ensembles simploïdaux
      Peltier S., Fuchs L., Lienhardt P.
      Actes des 17emes journées de l'Association Française d'Informatique Graphique, pages 13-21, AFIG - Novembre 2004

[1] Partition de l'espace et hiérarchie de cartes généralisées : application aux complexes architecturaux
      Fradin D., Meneveaux D., Lienhardt P.
      AFIG 2002, Lyon - Décembre 2002  pdf

Autres Communications

[3] Methodology for automatic building of structured geological models
      Schneider S., Perrin M., Guiard N., Rainaud Jf, Lienhardt P., Bertrand Y.
      Extended Abstracts from the Geomod2004 Conference, Emetten-Lake Lucerne, Switzerland, 9-11 June 2004, vol 45-1 Suppl; pp. 358-362 - Juin 2004

[2] Etude de l'homologie des ensembles simploïdaux
      Peltier S., Fuchs L., Lienhardt P.
      Groupe de Travail en Modélisation Géométrique - Mars 2004

[1] Modélisation et programmation d'évolution de surfaces
      Chen X., Lienhardt P.
      IMAGINA'92 (Forum des Nouvelles Images de Monte-Carlo) - 1992

Rapports Techniques

[3] Hierarchy of Generalized Maps for Modeling and Rendering Complex Indoor Scenes
      Fradin D., Meneveaux D., Lienhardt P.
      Rapport de recherche No 2005-04 - Novembre 2005  pdf  ps 

[2] nD Generalized Map Pyramids: Three Equivalent Representations
      Simon C., Damiand G., Lienhardt P.
      research report n° 2005-03, SIC, Université de Poitiers - Septembre 2005  pdf  ps 

[1] Pyramides de Cartes Généralisées, Chemins de Connection et Orbites Généralisées
      Simon C., Damiand G., Lienhardt P.
      research report n° 2005-02, SIC, Université de Poitiers - Mai 2005  pdf  ps 

Parties de Livres

[2] Hierarchies relating Topology and Geometry
      Kropatsch W., Haxhimusa Y., Lienhardt P.
      Cognitive Vision Systems, Springer - 2004

[1] Basic principles of topology-based methods for simulating metamorphoses of natural objects
      Françon J., Lienhardt P.
      Artificial Life and Virtual Reality, John Wiley, pages 23-44 - 1994

Actes de Conférences

[1] Proceedings of 12th International conference Discrete Geometry for Computer Imagery
      Andres E., Damiand G., Lienhardt P.
      Volume 3429 - April 2005

Revues en tant qu'éditeur

[1] Computers & Graphics: Special Issue: Discrete Geometry For Computer Imagery
      Andres E., Damiand G., Lienhardt P.
      Volume 30, Number 1 - February 2006

Crédits et mentions légales - Dernière mise à jour le 30 janvier 2017 - Fin de page