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Abstract— In this article, we present a rule-based language
dedicated to topological operations and based on graph
transformations. Generalized maps are described as a partic-
ular class of graphs determined by consistency constraints.
Hence, topological operations over generalized maps can be
specified using graph transformations. The rules we define
are provided with syntactic criteria which ensure that graphs
computed by applying rules on generalized maps are also
generalized maps. We have developed a static analyzer of
transformation rules which checks the syntactic criteria
in order to ensure the preservation of generalized map
consistency constraints. Based on this static analyzer, we have
designed a rule-based prototype of a kernel of a topology-
based modeler that is generic in dimension. Since adding
a new topological operation can be reduced to write a
graph transformation rule, we directly obtain an extensible
prototype where handled topological objects satisfy built-
in consistency. Moreover, first benchmarks show that our
prototype is reasonably efficient compared to a reference
implementation of 3D generalized maps which use a classical
implementation style.

Keywords- topology-based geometric modeling; graph
transformation; topological consistency; rapid prototyping

I. INTRODUCTION

This paper is a first investigation about the use of
graph transformation [4] in the scope of topology-based
geometric modeling. Indeed, previously, rule-based lan-
guages have been used in a restricted way to systematically
apply predefined operations on predefined objects, like
in L-system languages dedicated to plant growing [21].
We propose a rule-based dedicated language for user-
friendly describing operations of topological models. This
language includes some specialized variables to make
easier the handling of some operations such as triangu-
lation, cone or extrusion operations. Assuming that our
chosen topological structure is the generalized maps (or
G-maps for short) [16], the topological modifications are
modeled as graph transformation rules. The main interest
of rules stays in the fact that it becomes possible to deal
with them in a systematic way: a program dedicated to
rule application allows us to consider all operations in
a consistent and generic manner. We have developed a
prototype of a topology-based modeler as a specialized

rule application engine. Our modeler presents the advan-
tage of being generic with respect to the dimension of the
considered objects. Within our framework, it is particularly
easy to extend a rule-based modeler with new topological
operations. Actually, for that purpose, since the design
of a new rule directly provides its implementation, no
additional programming step is required. The consistency
of the transformations as well as their implementation
is fully automated. This feature considerably improves
the design of a consistent topological modeler. Indeed,
in [19], we have expressed the preservation of the G-
map consistency constraints by direct syntactic criteria
on rules which can be statically checked. Due to these
syntactic criteria, every new operation is consistent from a
topological point of view. This means that a rule applied to
a generalized map always produces a generalized map. We
illustrate our prototype through examples demonstrating
the modeling capabilities of our rule-based approach. We
compare it on some data sets with another topological
software, Moka [22].

This paper is organized as follows: we present graph
transformations and generalized maps in section II. In sec-
tion III, we present our language for G-map transformation
rules. In section IV, we give some syntactic criteria on
our transformation rules which ensure the preservation of
G-map consistency constraints. In section V, we briefly
present the main design points underlying our rule-based
modeler kernel. In section VI, we give some preliminary
and encouraging results of our prototype.

II. CONTEXT

In this section, we briefly introduce the key definitions
of both graph transformation rules [4], [10] and general-
ized maps [16], [17].

A. Graph transformation rules

As classical rewriting of terms [1], rewriting of graphs
allows one to match a pattern in a graph and then to
transform it into a new pattern. Several approaches of
graph transformation exist. We give below a short and
intuitive introduction. The interested reader can find a
complete presentation in [4], [10].



We call graph a classical directed graph with possibly
labeled nodes and arcs. For example, in Fig. 1(a), the
graph G has five nodes respectively named 1,2,3,5 and
6. The node 1 and 2 are respectively labeled by 10 and
20, they are depicted by a circle decorated with a label.
The unlabeled nodes, like nodes 3,5 and 6, are drawn
with dots. Arcs are drawn with arrows possibly labeled
(by a,b or c in our example). Moreover, two inversely-
directed arcs, like the two arcs between nodes 6 and 5
(both labeled by b), can be drawn with a simple line
(see graph H of Fig. 1(c)). Moreover, most of the time,
arc names are omitted since in practice, this simplification
does not raise ambiguity.
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Figure 1. Partially labeled graph and rule

A graph transformation rule r : L→ R is defined by two
graphs: L is the left-hand side and R is the right-hand side.
See the rule r on Fig. 1(b) for example. The left-hand side
L represents the pattern which is matched, the right-hand
side R represents the pattern which replaces the pattern L.

To be workable, such a graph transformation rule should
be provided with some mechanisms which explain how
the rule is applied on a graph G. The first step consists
in finding an instance of L in G. Rigorously, this means
computing a pattern matching m : L→ R. Formally, m is a
morphism1 of graphs that preserves structure and labeling.
In our examples, the matching is given by the identity of
node names. For instance, in Fig. 1, the node 1 of L is
matched with the node 1 of G. Let us note H the resulting
graph obtained by applying a rule r : L→ R on G, with the
match m : L→ G. The graph H is computed by removing
the subgraph m(L) in G and then by adding m(R). The
construction of H is usually denoted by G⇒r,m H.

Nevertheless, to apply the rule r on a graph G, the
existence of a match m : L→ G is not sufficient. The so-
called dangling condition should also be satisfied. This
condition means that no removed node of m(L)\m(R) is
linked to an unmatched node of G\m(L). For example, in
Fig. 2, the matched node 3 (it belongs to m(L)) is linked

1m : L→ G is a morphism if for any l-labeled node v in L, m(v) is
an l-labeled node, and for any l-labeled arc e of L with a source node
u and target node v, m(e) is an l-labeled arc in G with the source node
m(u) and the target node m(v).

to the unmatched node 5 (it does not belong to m(L)). So,
the removing of m(L) in G creates a dangling arc2 and the
resulting structure H is not a graph. When the dangling
condition is fulfilled, such situation is prevented and the
resulting structure H is a graph (see Fig. 1(c)).
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Figure 2. Dangling condition

As for classical term rewriting, to make graph trans-
formation rules general, they may contain some variables
[11]. For example, the notion of attributed variables has
been introduced to deal with node labels and arc labels.
In Fig. 3, the variables x and y of the left-hand side can
match any labels and the expression x+ y of the right-hand
side should be evaluated to define the label of the new
node 4. To apply this rule with variables on the graph G
(see Fig. 1(a)), we must first instantiate variables occurring
in the rule (i.e. the variables x and y) with appropriate
values (here, resp. with the values 10 and 20) in order to
compute a classical rule r without variables (see Fig. 1(b))
and then apply r (see Fig. 1(c)).
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Figure 3. A rule with attributed variables

Other variables have been introduced to capture generic
graph patterns to be transformed. For example, graph
variables are special nodes which can be substituted by any
graph provided that arcs connecting this special node are
preserved in the transformation. However, we will not use
directly the variables as they are defined in [11]. Indeed, to
our point of view, their use is not specialized enough with
regard to our needs, but [11] inspired us to introduce a new
kind of variables dedicated to the modeling of topological
transformations (see Section III).

B. Generalized maps

In this section, the basic definition of generalised maps
is introduced. But first, as generalised maps are not so
commonly employed, we discuss some motivations of
their use.

In solid modeling, B-rep modelers are based on topo-
logical data structures as winged-edge, half-edge [18]
or quad-edge [9] to represent the cell subdivision of
geometric objects. Some data are attached to the cells in
order to define the shape of the objects. These data are
usually referenced as the embedding of the object.

2A dangling arc is an arc which has no source node or no target node.



It has been shown that all these data structures can
be formalized and modeled by combinatorial maps or
generalized maps (or G-maps, for short) [17] depending on
whether they handle orientable or non orientable objects.
For example, detailed conversion between the half-edge
data structure and 2-maps can be found in [15].

The first main advantage of dealing with maps is the
homogeneity in the handling of dimensions: subdivisions
of any dimension can be manipulated in the same manner.
This allows to develop efficient general algorithms. For
example, the connectivity compression algorithm devel-
oped in [20] can be used to transmit large models such
as volumic urban environments. For a given dimension,
statistical study of the cells of 3D-manifolds [7] helps in
the complexity analysis of data structures and algorithms
handling these manifolds.

The second advantage is the consistency constraints:
they express relations between elementary components
(the darts) that compose a combinatorial map or a G-map.
They also give the conditions to obtain a consistent object.
These conditions have to be maintained and checked when
operations are performed. For example, these consistency
constraints can help to to build well-formed building
interior models to simulate heat transfer or radio-wave
propagation [12].

From a practical point of view, all the basic topological
operations, such as Euler operators can be expressed using
dart sewing and unsewing that are the atomic operations
over G-maps. Moreover, high level operations such as
triangulation, extrusion, rounding, etc. are generalized in
dimension.

Even if combinatorial maps have demonstrated their
usefulness to handle complex geometric objects such as
multiresolution subdivision surfaces [15]. Different studies
outside the solid modeling field have also been conducted
using (combinatorial or generalized) maps. They usually
turn to be very helpful to structure knowledge in fields
such as image processing [5], [14], [3] or in applications
such indoor wave propagation in very large building [6].
Moreover, the formalization of topological structures pro-
vided by combinatorial maps can also be useful to proof
non trivial theorems [2].

However, a common need is to develop an adapted
modeler kernel and then to plug high level specialized
modeling operations over it. Most of the time, the modeler
kernel is developed directly in a programming language
and then the verification of the topological consistency
becomes an hard work.

The topological structure of an object consists in both
its decomposition into topological cells (vertices, edges,
faces, volumes, etc.) and the neighborhood relations be-
tween these cells. The decomposition of a 2D object is
shown on Fig. 4.

From this example of subdivision the notion of gen-
eralized maps can be intuitively introduced. The object
represented on Fig. 4(a) is composed by two faces F1
and F2 glued along their common edge c. This edge
can be split into two new edges (cf. Fig. 4(b)), in order
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Figure 4. Cell decomposition of an object

to dissociate F1 and F2. These new edges correspond
respectively to edge c seen from face F1 and to edge c
seen from face F2. A 2-dimensional relation α2 is added
between these new edges, in order to remember that they
initially correspond to a single one. This process is applied
to all other edges, but no new edge is created since all
edges belong to the boundary of the surface: in order
to formalize this fact, each edge is linked with itself by
the 2-dimensional relation (cf. Fig 4(b)). The boundary
of each face F1 or F2 is a 1-dimensional quasi-manifold
: the same process can be applied, and each vertex is
split into two distinct vertices, linked by a 1-dimensional
relation α1 (cf. Fig 4(c)). The 2-dimensional relation is
now defined upon these new basic elements (cf. Fig 4(c)).
The boundary of each edge is now defined by two distinct
vertices, linked by a 0-dimensional relation α0 meaning
that they correspond to a single edge (cf. Fig 4(d)). Split
vertices obtained at the end of the process are the basic
elements of the model, and they are called darts in the
combinatorial map terminology.

α0 α1 α2 α3

Figure 5. αi graphical codes

As the index i of the αi links gives the the dimension
of the considered neighborhood relation, the α3 link gives
volume neighborhood relation. Notice that in all figures
given in the sequel, we will use the αi graphical codes of
Fig. 5 in order to be more readable.



Unlike most data structures used in solid modeling,
topological cells are not explicitly manipulated in G-maps
but only implicitly defined. They can be computed using
traversal of nodes by the means of given neighborhood
arcs. For example, the d5 incident 0-cell (Fig. 6(a)) is the
subgraph which contains d5, nodes reachable from d5 us-
ing arcs α1 and α2 (nodes d5, d6, d7 and d14) and the arcs
themselves. This subgraph is denoted by <α1α2> (d5)
and models the vertex B of Fig. 6(a). In Fig. 6(b), the d5
incident 1-cell is the subgraph <α0α2> (d5) containing
nodes d5,d4,d7 and d8, and adjacent α0 and α2 arcs. It
represents the topological edge c. Finally, in Fig. 6(c), the
d5 incident 2-cell is the subgraph <α0α1> (d5) and repre-
sents the face F1. More generally, an orbit <αi . . .α j> (d)
is the subgraph which contains d, all nodes reachable from
d using αi to α j-labeled arcs, and all of these arcs.
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Figure 6. Reconstruction of cells adjacent to d5

Usually, generalized maps are defined algebraically
[16], but they can also be defined as graphs whose nodes
are the darts and graph arcs are the neighborhood relations
α0 to αn. Then the topological consistency constraints
are expressed by three graph constraints. The following
definition gives them.

Definition 1 (generalized map):
A n-dimensional G-map (n≥ 0) is defined as a graph in
which arcs are labeled in {α0, . . . ,αn} and such that:
Non-orientation constraint: G is non-oriented.
Adjacent arcs constraint: each node is the source node
of exactly n+1 arcs respectively labeled by α0 to αn.
Cycles constraint: for every αi and α j verifying
0≤ i≤ i+2≤ j ≤ n, there exists a cycle labeled by
αiα jαiα j starting from each node.

The cycle constraint ensures that in G-maps, two i-cells
can only be adjacent along (i−1)-cells. For instance, in
the 2-G-map of Fig. 4(d), the α0α2α0α2 cycle implies
that faces are always stuck along topological edges. Let
us notice that thanks to loops (see α2-loops in Fig. 4(d)),
these three constraints are preserved at the border of
objects.

III. G-MAPS TRANSFORMATION RULES

We aim to use graph transformations (see section II) to
define topological operations. For example, in Fig. 7, we
define the 2D extrusion of a border edge (see Fig 7(a) for
an intuitive definition of the operation) in a 2-G-map by
means of a graph transformation rule (see Fig 7(b) for a
rigourous definition in terms of a graph transformation).
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(b) Rule

Figure 7. 2D extrusion of an edge

In the same manner, we want to define the
3-dimensional extrusion of an half-face in a 3-G-map.
Since there exist different kinds of half-faces, for in-
stance triangular or square ones, we introduce a notion
of variables (see section II) to write a generic rule which
defines the extrusion of any half-face. By instantiating this
variable, we are then able to specialize our generic rule for
any particular half-face. We therefore define specialized
variables which abstract any orbit of a generalized map.

An orbit variable X typed by <αi . . .α j>, noted
X<αi . . .α j>, can be instantiated by any orbit
<αi . . .α j> (d). For example, an orbit variable
HF<α0α1> of the matched pattern Fig. 8(a) can
be instantiated by the triangular half-face of Fig. 8(d), or
by the square half-face of Fig. 8(g).
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Figure 8. Orbit variable relabeling

Relabeling functions allow to modify orbits. First, we
can remove some arcs of a given orbit. For example,
by removing the α1 arcs of an <α0α1>-typed half-face
(for example, in the pattern Fig. 8(b)), we disconnect the
border edges of the half-face (see Fig. 8(e) for the cor-
responding instantiated pattern with triangular half-face).
We adopt the convention that the removing of α1 arcs is
denoted by the removing label ” ” at the same position
than α1 in the initial pattern typed <α0α1> associated to
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Figure 9. Embedding with attributed variables

the node 0. Thus, by instanciating the variable HF with a
triangular face, we get a full triangle in Fig. 8(d) and three
disconnected edges in Fig. 8(e). In the same manner, by
instanciating HF with a square face, we obtain the graphs
of Fig. 8(g) and 8(h).

Instead of removing some arcs, we can relabel them. For
example, from an half-face HF<α0α1>, we can compute
the sides of a prism by using two copies of HF where α0
arcs are removed and α1 ones are relabeled to α2. We note
this modified half-face: HF< α2>. Again, the position of
labels defines the modifications. Thus, the sides of a prism
can be abstracted by the pattern Fig. 8(c). Instantiating the
HF variable by a triangular half-face produces the three
sides of the triangular-based prism of Fig. 8(f). Conversely,
instantiating HF with a square half-face produces the four
sides of the parallelepiped of Fig. 8(i).

At last, we use attributed variables (see section II) to
handle the embedding within the patterns. By the means
of attributed variables, we can match the geometry of
an existing object or set a new geometry to a computed
object. For example, in the pattern Fig. 9(a), the attributed
variable P allows one to match the geometric points of

the half-face HF . Moreover, in the pattern Fig. 9(b), the
expression P+~V allows to translate geometric points of an
half-face. By instantiating the orbit variable HF of patterns
Fig. 9(a) and Fig. 9(b) by a triangular face, we respectively
obtain the graph of Fig. 9(c) (where A, B and C are three
geometric points) and the translated graph of Fig. 9(d).

By mixing previous features (orbit variables, removing,
relabeling and attributed variables), we can specify the 3D
extrusion with the general rule of Fig. 10(a). The triangular
instantiation of this general rule gives the geometry of
Fig. 10(b) and the topology of Fig. 10(c). In this last
figure, we can distinguish the 5 copies of the original half-
face. The nodes of the original half-face are indexed by
0 (the name of the node in the general rule) while the
nodes of ith copy are indexed by i (the name of their
corresponding nodes in the general rule). In the left-hand
side, the original node 0 is the matched half-face, that
is to say the one we want to extrude. Let us notice that
in the right-hand side, this half-face stays unmodified, it
represents the base of the computed prism. The node 5
is a new half-face translated from the original one and
represents the other base of the prism constructed by the
rule. The four intermediate nodes, and the arcs which
connect them to each other, are the half-faces that form
the sides of the extruded prism.

Our syntax allows one to specify a large class of
operations on polyhedral objects. For instance, in addition
to extrusion, the rules of the sewing of two volumes,
the topological triangulation, the cone operation and the
rounding of a vertex are given in the annex section VIII.

From our point of view, our rule-based language is
expressive enough to cope with operations on polyhedral
objects whose definition only depends on the topological
structure of the manipulated objects. In particular, our
language does not allow us to specify operations whose
definition depends on some geometric conditions on the
initial objects under modifications. Thus, we cannot at
the moment define the Boolean operations for which it is
well-known that the resulting objects are closely related
to initial geometric conditions.
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Figure 10. 3D extrusion of a face



IV. G-MAP TRANSFORMATION RULES CONSTRAINTS

Usually, the definition of a new operation implies the
verification of its mathematical definition. It consists in
proving that the consistency constraints of the G-maps
are preserved by the operation. This proof is generally
done manually for each operation. With our rule-based
framework, we can provide a solution that applies to all
operations defined by rules. Indeed, we intend to provide
our rules with syntactic criteria ensuring the preservation
of G-maps consistency constraints by rule application.
These criteria are shortly presented here and their detailed
definition can be found in [19]. A correct rule should
satisfy the three following criteria, directly corresponding
to the G-maps consistency constraints given in section II:
• Non-orientation criterion;
• Adjacent arcs criterion;
• Cycles criterion.

A. Non-orientation criterion

As G-maps are non-oriented graphs, the application of
rules on a G-map must also produce a non-oriented graph.
So, intuitively, the non-orientation criterion means that, in
a rule r : L→ R, both L and R are non-oriented graphs
(this condition remains the same whether the rule contains
variables or not).

B. Adjacent arcs criterion

In n-G-maps, the adjacent arcs constraint means that
each node has exactly n+1 adjacent arcs respectively
labeled with α0 to αn. In order to preserve this constraint,
let us first consider rules without variables, like the rule of
Fig. 10(c). Such rules (without variables) have to satisfy
the following properties:
• Adjacent arcs of preserved nodes (nodes that belong

to both sides) have the same labels on both the
left-hand side and right-hand side. For example, in
Fig. 10(c), a0 has three adjacent arcs labeled with
α0, α1 and α2 in the left-hand and right-hand sides.
Nevertheless, these arcs are not necessarily connected
to the same nodes in both sides.

• The removed nodes (nodes that belong to only left-
hand side) and the added nodes (nodes that belong to
only right-hand side) must have exactly n+1 adjacent
arcs respectively labeled with α0 to αn. For instance,
in Fig. 10(c), both the nodes a1, a2, a3, a4 and a5
have their four α0, α1, α2 and α3-labeled adjacent
arcs.

In order to extend these properties on generic rules
containing variables and relabeling functions, like the
one in Fig. 10(a), arc labels and relabeling functions are
considered in the same manner. Indeed, the relabeling
functions associated to a given node can be seen as
implicitly defining adjacent arcs of this node. For example,
by taking into account these implicit arcs, the node 0 of the
rule of Fig. 10(a) satisfies the first property: in both side,
the node 0 has two implicit α0 and α1-labeled adjacent
arcs and an explicit α2-labeled adjacent arc. Let us notice
that explicit arcs in one side can be implicit in the other

side. In the same manner, the added nodes 1, 2, 3, 4 and
5 satisfy the second property: they have their four α0, α1,
α2 and α3-labeled adjacent arcs, implicitly or explicitly.

C. Cycles criterion

Intuitively, this syntactic criterion guarantees the cycle
constraint of n-G-map: for 0≤ i≤ i+2≤ j ≤ n every
node belongs to an αiα jαiα j-labeled cycle. The criterion
is defined by case studies of the status (added, removed
or preserved) of nodes and on the way (implicit, explicit)
labels are managed on the rule patterns:

• An added node must be added with all the required
cycles. For example, the nodes 1, 2, 3, 4 and 5
of the rule of Fig. 10(a), belong to α0α2α0α2 and
α1α3α1α3-labeled cycles. Both cycles can be derived
from the given of implicit and explicit labels attached
respectively to the labeling function or to the adjacent
arcs.

• If a preserved node belongs to a αiα jαiα j-labeled
cycle in the left-hand side of the rule, it must belong
to an αiα jαiα j-labeled cycle in the right-hand side
too. For example, the node 0 of the rule of Fig. 10(a),
belongs to an α0α2α0α2 cycle in both sides.

• If a preserved node belongs to an incomplete
αiα jαiα j-labeled cycle (i.e. at least, one of the two
labels αi and α j does not occur on an adjacent edge),
then its αi and α j-labeled arcs are preserved. Indeed,
as some of the cycle arcs are matched in the left-hand
side while the other ones are not matched, modifying
the matched arcs could lead to a breaking of the cycle.
For example, in Fig. 10(a), the α1α3α1α3-labeled
cycle of node 0 is partially matched in the left-hand
side (only α1 is matched). So, in order to avoid the
breaking of the corresponding cycle, this α1-labeled
arc is required to be unchanged in the right-hand side.

As these criteria are syntactically expressed on our
rules, their verification can be done both automatically
and statically thanks to their genericity. Indeed, they are
common to every G-map transformation rules. Thus, while
in the classical approach, one has to verify the preservation
of the G-map consistency constraints for each operation, in
our framework, it suffices to provide our rules with a static
analyser for the verification of the above syntactic criteria.
So, a full rule-based modeler kernel will not only handle
a rule application engine but also a function to check the
rule syntax. Hence, a rule-based definition of operations
provides an automatic and reliable implementation of
operations that preserves constraint. Indeed, supposing that
the operation under design can be defined as a rule, then its
implementation is immediate and requires no special effort
since its application is reduced to a simple application of
the corresponding rule in the engine. Such an approach
is analogous to the one of rule-based languages involving
term rewriting, but has never been addressed in the context
of topology-based geometric modeling. The design and the
implementation of such engine is precisely the subject of
the two next sections.



V. A RULE APPLICATION KERNEL

In this section, we first introduce the general structure
of our rule-based modeler kernel. Then, we present our
G-map and rule data structures and an efficient rule
application algorithm. The chosen programming language
is the functional language OCaml [13] well recognized
for prototyping issues and for symbolic manipulations.
Nevertheless, the presented data structures and algorithms
can be directly translated into any programming language.

A. Architecture of our modeler kernel

Let us introduce the main lines of our implemented ker-
nel. It regroups both our G-map data structure and our rule
application engine into an OCaml library. This library is
parameterized with the objects dimension (i. e. the G-map
dimension) and the objects embedding (i. e. a data type).
This library allows to load from a file different sets of rules
according to the application needs. Indeed, the type of the
rules both depends on the chosen G-map dimension and
on embedding data type. Let us notice that as rules are
stored in an external file, they can be modified without
recompiling the specified kernel. So, there are as many
modeler instances as there are possible initial settings
for the map dimension and for the considered rule set.
Moreover, thanks to the rule syntactic criteria, the rule
design is guided. Actually, at the file loading, the criteria
checking program indicate which are the mistakes in a
rule.

Let us now describe some key elements of the imple-
mentation of G-maps, rules, and rule application.

B. The G-map data structure

The G-map data structure consists in a data type asso-
ciated to the following minimal set of functions:
• Creation and removal of a free node, i. e. a node

which is not connected to another node;
• Orbit covering operation (consisting in enumerating

nodes and edges of an orbit, and corresponding in
practice to dedicated graph traversal algorithms) ;

• Vertex embedding setting. It defines the embedding
for each node of a given vertex orbit.

It should be noticed that two classical G-map operations
are not listed: the sewing and unsewing of two cells.
Actually, as they can be implemented by rules, no specific
function is needed.

We make our framework workable for objects of any
dimension with any kind of embedding. Therefore, our
G-map implementation is parametrized by both the G-map
dimension and the vertex embedding data type. For exam-
ple, we can have a 2-G-map embedded by RGB colours or
a 3-G-map embedded with 3D points. In our implemen-
tation, the embedding is explicitly given for every node
so no covering operation is needed to retrieve it since by
construction the embedding is directly available from any
node of the G-map. However, we optimize the embedding
handling with a sharing strategy mainly inspired from the
union-find forest [8]. Indeed, only one node per vertex
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B

A

(b) After the sewing
of the faces

B

A

(c) After an embed-
ding reading

Figure 11. Chaining of the embedding

orbit (we call it the carrier node) directly refers to the
embedding. The other nodes only have an access to the
embedding through a chain of indirections (see Fig. 11).

For example, on Fig. 11(a), four nodes directly refer
the embeddings A, B, C and D while the others use
indirections (represented by arrows on Fig 11). Hence,
construction operations do not need any covering to update
the embedding when vertices fuse. Let us take an example.
When the two edges AB and CD are sewed (see Fig. 11),
only the carrier nodes of CD are updated. Moreover,
we take benefit of every embedding reading to reduce
the length of indirection chains. For example, after an
embedding reading on the structure of Fig. 11(b), the
chains are advantageously reduced into the chains of
length 1 of Fig. 11(c).

C. Rule data structure

In this section, we propose a data structure which imple-
ments our rules. First, we introduce some choices mostly
motivated by the rule application algorithm described in
section V-D.

As a first convention, the rule nodes are named using
integer ranges starting from 0. Hence, we can use these
node names as array indexes in our algorithm. Let us take
an example. The face removal of Fig. 12(a) consists in
identifying two half-faces of a same face and their re-
spective neighbours. Then, the two half-faces are removed
while their neighbours are connected together. Practically,
in the left-hand side of the final rule on Fig. 12(b), nodes
1 and 2 identify the two half-faces while nodes 0 and 3
denote their neighbours. However, although the half-faces
are removed by the rule, the nodes are named 0, 1, 2, 3 in
the left-hand side and 0, 1 in the right-hand side. Let us
notice that because of this naming convention, preserved
nodes can have different names in the two sides of the
rule. Thus, we have to record the update of node names.
For example, in the removal rule, 3→ 1 denotes the fact
that the node 3 is renamed into 1 while 0→ 0 denotes the
fact that node 0 is not renamed.
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Figure 13. Concrete rule of face extrusion

The second implementation choice concerns the em-
bedding computation. As introduced in section III, this
computation is specified by expressions carrying by nodes
of the right-hand side and corresponding to the new or up-
dated values of node embedding. As our rules essentially
capture topological operations, the pertinent embedding
values of the initial G-map are recovered through the
nodes of the rule left-hand side, while the embedding
values of the transformed G-map are computed through
computations from initial embedding data. More precisely,
the expressions use names of left-hand side nodes to refer
to knowledge about their embedding. Hence, no specific
embedding variables are required. Thus, only nodes of the
right-hand side can be labeled with expressions whose
basic elements directly denote embedding of left-hand
nodes. For example, the extrusion rule of Fig. 10(a)
is translated into the concrete rule of Fig. 13 where
the expression x+~V becomes ebd(0)+~V . Moreover, the
multiple embedding notations of the original rule have
disappeared. Indeed, in our concrete rules, it suffices to
explicitly give an embedding expression for only one node
of each topological vertex (sharing by construction the
same embedding). In the rule of Fig. 10(a), nodes 3, 4 and
5 belong to the same topological vertex. So, the expression
ebd(0)+~V defines the embedding of all of them.

At last, as we want to apply rules interactively, we need
to point out where a rule has to be applied in a G-map.
In practice, the two sides of a rule are not obtained in the
same way. The right-hand side is literally constructed by
the rule application while the left-hand side is recovered
from the existing G-map3.

For example, in Fig.14, we point out the face where
we want to apply the face removal rule. We call this the
instantiation of the abstract nodes of the left-hand side
(the ones which handle an orbit variable) by concrete

3Furthermore, having two different node types in the left-hand side
does not mean that edges have to be relabeled. In the same way, having
a type with a label ” ” does not mean that edges have to be removed.
Practically, these two cases only specify the pattern where the rule can
be apply.

α2

1

HF<α0α1>HF<α0 _> HF<α0α1> HF<α0 _>
α3 α2

0 2 3

Figure 14. Instantiation of the removal rule left-hand side

orbits of the G-map. Intuitively, considering an abstract
node, we associate it with one concrete node (a node of the
G-map) and then retrieve the corresponding concrete orbit
with a covering operation. For example in the removal
rule of Fig. 14, we do not need to associate one concrete
node to each abstract node. Actually, considering one
abstract node per connected component is sufficient. In
the example, the nodes 1 and 2 of the left-hand side are
connected by α3. Thus, the concrete orbits of both 1 and 2
can be retrieved with a single covering. Nodes that need to
be associated to a concrete node for rule application are
called hooks. In the removal example (see Fig. 14), the
abstract node 1 is a hook and the instantiation of the four
abstract nodes results from the concrete node associated to
the abstract node 1. Let us notice that in order to retrieve
the concrete orbits with a covering of the G-map, hooks
must hold a complete type (a type without the label ” ”).



Here, we propose an OCaml rule data type. In Fig. 15,
we give the source codes of the previous extrusion and
removal rules. The first field, left_hooks, is the list of
names of hooks. For the removal rule (see Fig. 12(b)) this
list only contains the name 1. The field left_nodes
is an array of the types (represented by OCaml lists)
of the left-hand side nodes, such that its indexes are
the nodes names. For the extrusion rule (see Fig. 13),
it only contains the node 0 typed [0;1] (for α0α1).
The particular removing label ” ” is noted −1. The field
left_arcs is the list of arcs of the left-hand side. Arcs
are noted by a triple as (source name, target name, label).
For example, the α2 arc between nodes 0 and 1 of the
removal rule (see Fig. 12(b)) is noted (0,1,2). The field
names_updating is an array that defines how nodes
are renamed from one side to the other (as explained in
the beginning of this section). Its indexes are left-hand
side names while its values are right-hand side names.
For the removal rule, node 3 is renamed into 1. Thus,
the third element of names_updating is 1. As well as
arc labels, a removed node is renamed −1. For example,
as node 1 of the removal rule is removed, the element
stored at the index 1 is −1. The fields right_nodes and
right_arcs are respectively the nodes types and the
arcs of the right-hand side. At last, the field right_ebd
is an array of embedding expressions of the right-hand
side nodes.

l e t face_extrusion = {
let_hooks = [0];
left_nodes = [|[0;1]|];
left_arcs = [(0,0,2)];
names_updating = [|0|];
right_nodes = [|[0;1];[0;-1];[-1;2];[-1;2];
[0;-1];[0;1]|];

right_arcs = [(0,1,2);(1,2,1);(2,3,0);(3,4,1);
(4,5,2);(1,1,3);(2,2,3);(3,3,3);(4,4,3);(5,5,3)];

right_ebd_fun = [ebd 0;none;none;(ebd 0)+V;
none;none]}

l e t face_removal = {
let_hooks = [1];
left_nodes = [|[0;-1];[0;1];[0;1];[0;-1]|];
left_arcs = [(0,1,2);(1,2,3);(2,3,2)];
names_updating = [|0;-1;-1;1|];
right_nodes = [|[0;-1];[0;-1]|];
right_arcs = [(0,1,2)];
right_ebd_fun = [ebd 0;none]}

Figure 15. OCaml type of rules

D. Rule application algorithm
This technical section briefly introduces our rule appli-

cation algorithm. The algorithm input consists in associat-
ing one concrete G-map node to each hook. As explained
in previous section, we then instantiate the abstract nodes
into concrete orbits. As we have seen in section III, orbit
variables allow ones to handle several relabeled copies of
a same given orbit (the one abstracted by a hook). After
the instantiation process, the algorithm needs to remember
which concrete nodes are copies of a same node of this
given orbit. For this purpose, we store the result of the
instantiation process in a 2D array such that these copies
are stored at the same line. In this array, columns model
the abstract nodes.

In the second step an analogous 2D array is constructed
for the right-hand side. For this purpose, the preserved
columns (the abstract nodes) of left-hand side are reused
and stored at their new array index according to the node
names updating. Concerning abstract nodes added by the
rule (the ones wich only appear in the right-hand side),
additional columns are filled with names of concrete nodes
newly added to the G-map. For now, in the G-map, these
new concrete nodes are disconnected and not embedded.
These new connections are computed in the two following
steps.

In the third step, we create the arcs within the different
copies according to the orbit variable relabelings. Thanks
to our arrays (let us recall that copies of one concrete node
are stored at the same line), the new arcs are created by
considering only the concrete orbit of a hook. For example,
let us consider an abstract node a which has a relabeling
αh→ αk and a concrete node d stored at line i of the a
column. To compute the αk-neighbour of d, we consider
the hook column and look for the αh-neighbour of the
concrete node of line i. This way, we obtain a new line
index j. At last, we get the αk-neighbour of d by looking
at the j line in the a column.

In the next step, we connect the orbit copies to each
other according to the arcs of the right-hand side. Hence,
for an arc (s, t,αk) in the right-hand side, all the concrete
nodes of the s column are αk-linked, line by line, to the
concrete nodes of the t column. Let us notice that for now,
the connections of the preserved concrete nodes have not
been modified.

The next step is the embedding computation according
to the embedding expressions of the right-hand side.
As embedding expressions refer existing embeddings
(see section V-C), the transformations of these existing
embeddings are performed at last. Let us notice that the
number of embedding computations can be minimized
with our previously described embedding sharing strategy
(see section V-B): in practice, before the embedding is
computed, new concrete nodes share a default embedding.

In the final step, we first remove the concrete nodes
(and their adjacent arcs) associated to the abstract nodes
which only belong to the left-hand side. Then, if it is
required, we then relabel the preserved orbits. Finally,
added concrete nodes are linked to preserved concrete
nodes according to the arcs of the right-hand side.

VI. RESULTS

A. Prototyping either a 2D modeler or a 3D modeler

In the previous section, we have proposed a kernel
which implements our rule application engine. In this
section, two case studies are presented. The first one
illustrates the fact that modeler instances are parameterized
by the objects dimension. For this purpose, we have
studied the computation of 2D fractal objects. Here, the
kernel is parametrized for 2-G-maps embedded by 2D
points. Let us notice that as fractals are usually defined
by rules, the design of fractals is straightforward in our
framework. For instance, the Sierpinski’s carpet illustrated



in Fig. 16 is easily computed. First, the external square is
obtained by inserting a vertex, then by extruding it into an
edge and finally by extruding this edge into a face. The
carpet is then computed from the square by the means of
four successive applications of a dedicated rule.

Figure 16. Sierpinski’s carpet fractal computed with rules on a 2-G-map

The second case study of our framework is a proto-
type of a 3D extendable modeler. Here, our kernel is
parametrized to be used with 3-G-maps embedded by
3D points. All the modeling operations are defined with
our transformation rules. Let us recall that rules are not
hardcoded in the program but loaded from an external file
at the startup of the application. Thus this modeler is easily
extendible. Any new operation can be added with a rule
without recompiling the modeler.

(a) A rounded tetrahedron (b) α3sewing

Figure 17. The 3D modeler prototype

B. Prototyping operations
The modeler main window is an OpenGL 3D view

of the embedded 3-G-map, see Fig. 17. All the loaded
rules are listed in a menu. Choosing one rule in the list
applies it to a list of selected nodes. The node selection
is done with mouse picking allowing to indicate nodes
which are associated to each hook of a rule. The order of
the selection gives the position in the list of hooks.

Our rules provide an easy and efficient way to design
and simultaneously implement operations. We have de-
signed all the usual topology-based operations with rules:
sewing, unsewing, cone operations, extrusions, triangula-
tions, roundings, subdivisions, removals, expansions and
contractions. Moreover, some other simple operations have
been prototyped. For example, on Fig. 18(a), an operation
that thicks the surfaces of an object4. Another example is
an operation that computes a volume outline of an object5.

4This operation can be used to quickly design walls of a building.
5This operation can be used to quickly design a windows from a

regular grid.

(a) Thicken of a surface

(b) Volume outline of an object

Figure 18. Easily prototyped operations

We also re-use our 2D fractal rule on 3-G-maps. These
rules generate a lot of nodes and thus provide a relevant
robustness test on real size objects. For example, by
applying our Sierpinsky’s carpet rule on the Standford
Bunny, its number of nodes is multiplied by 8. This
operation take6 0.41 s on a medium resolution model of
23106 nodes (see Fig. 19) and 1.97 s on an high resolution
model of 97806 nodes.

Figure 19. Sierpinski’s carpet rules applied on the Stanford Bunny

We have also computed some 3D fractal objects with
3D dedicated rules analogous to the 2D fractal ones.
For example, we computed the Menger sponge (which is
the 3D extension of the Sierpinski’s carpet) of Fig. 20.
The corresponding rule is quite complex. In particular,
its right-hand side is a grid of 20 interconnected nodes.
Nevertheless, the constraints checking guides us for its
design and only about forty minutes were required to
design it. As the design of a new rule stands for both
the definition of a new operation and its implementation,
this design cost is low. Indeed, there is no implementation
cost.

6For all presented computation times, we used a 2 GHz Intel Core 2
Duo MacBook with 2 GB RAM.



Figure 20. Menger sponge computed with rules on a 3-G-maps

C. Efficiency

Here, in order to validate our approach, we present some
results obtained by our modeler kernel. These results are
compared with the kernel of a topology-based modeler
called Moka [22] that uses 3-G-maps. As Moka is a
3D dedicated application written in C++, its operations
have been developed according to conventional methods
and have been carefully optimized. From another side,
our kernel is generic in dimension (i.e. parametrized
by the G-map dimension) and the operations are not
optimized because their implementation results from a
unique function that applies all rules. Considering this
comparison, it can be noticed that our important gains in
development time have been obtained with an acceptable
loss of performances. In the study below, computing times
and length of operation programs are both compared.

Here, we first discuss results about computing times.
The table I presents computing times of operations per-
formed on objects of different sizes (i.e. number of nodes).
Test objects have realistic sizes as they are made of several
thousands of nodes. An analysis of the results shows
that computation times obtained by our approach are of
the same complexity order than Moka. For example, the
volume triangulation have been tested with volumes made
of both various numbers of faces and different face degrees
(triangles or squares). Our results show that its computing
times are in a constant ratio (approximately 3.5) with the
operation implemented in Moka. In the same manner, the
face triangulation has been tested with various face degrees
and is also in a constant ratio (approximately 2.1) with
Moka.

Table I
TIME EFFICIENCY COMPARISON

Operation Number of nodes Moka Prot. Ratio
Face 32768→ 98304 0.09 s 0.19 s ×2.11
triangulation 65536→ 196608 0.19 s 0.37 s ×1.95

262144→ 786432 0.71 s 1.58 s ×2.23
Volume 12288→ 49152 0.03 s 0.10 s ×3.33
triangulation 49152→ 196608 0.13 s 0.48 s ×3.69

196608→ 786432 0.60 s 2.18 s ×3.63
Dug edges 3072→ 12288 0.08 s 0.05 s ×0.63
and vertices 24576→ 98304 0.72 s 0.46 s ×0.64
rounding 196608→ 786432 5.79 s 3.96 s ×0.68
Full edges 3072→ 12288 0.14 s 0.06 s ×0.42
and vertices 24576→ 98304 1.17 s 0.61 s ×0.52
rounding 196608→ 786432 9.01 s 5.63 s ×0.62
α3-sewing 65536 0.22 s 0.19 s ×0.86

131072 0.43 s 0.39 s ×0.91
262144 0.91 s 0.83 s ×0.91

α3-unsewing 65536 0.22 s 0.19 s ×1.16
131072 0.43 s 0.51 s ×1.19
262144 0.86 s 1.00 s ×1.16

Comparisons have also been made for more complex
operations like topological rounding of edges and vertices.
For this last operation, objects containing various numbers
of volumes were used. Its computation times are also in the
same complexity as those obtained with Moka. Actually,
computation times of our kernel are better. This can be
explained by the geometric preconditions of the rounding
operation which are computed in Moka. Future works have
to extend the rules to take this geometric part into account.

Last considered operations are α3-sewing and unsewing.
Again, these operations have been tested with various face
degrees. Like in the previous comparisons, the complexity
is the same in both applications.

We notice that our sewing is more efficient than the
Moka’s one, while our unsewing is less efficient. This dif-
ference is explained by the different ways the applications
deal with the embedding. In our kernel, every node refers
to the embedding using the strategy previously described
in section V-B. Conversely, in Moka, the embedding is
referenced by only one node per vertex orbit. The sewing
operation is faster in our kernel because we optimize
the embedding sharing. Indeed, in the two applications,
when two vertices are sewed, only one of the two carrier
nodes need to have its embedding reference updated.
Nevertheless, in our case, the carriers nodes are directly
known through the references chain while they have to
be found with a covering operation in Moka. As a dual
consequence, the unsewing operation is faster in Moka.
To unsew, vertex orbits must be split in two and the
embeddings have to be duplicated. One of the two new
vertex orbits keeps the original embedding reference while
the other gets a new one. This implies to define this
reference for all nodes in our kernel and only for the
carrier node in Moka.

Let us notice that these computing times comparisons
should be related to the program lengths (in terms of
number of code lines). Our kernel is 700 OCaml lines
long. This includes both data structures and covering
operations of G-maps, data structures of rules, rule syntax
checking and the 200 lines of rules application engine.
In the loaded file that contains operation rules, one rule
definition takes few lines. In Moka’s topological kernel,
each operation is 100 to 300 lines long and the whole
kernel is about 30000 lines. Moreover, in a classical
development approach, every single line must be tested
and validated. Thus, applications like Moka usually take
several years to be developed. In contrast, our prototype
had been developed during approximately seven weeks.
The evaluation of the amount of efforts required to develop
software is not straightforward. However, with no doubt,
our first estimations show that the rule approach provides
a very convenient and quick way to develop a kernel
modeler. Indeed, once the rule syntax is learned, the design
of a new operation has a low cost.

VII. CONCLUSION

In this article we have proposed a rule-based language
for specifying topological operations on n-G-maps. Based



on graph transformation, our rules include variables to
generically denote orbits and relabeling functions which
allow us to relabel orbits. These features are useful for
most of the topological operations, for instance triangu-
lation, cone, extrusion or even rounding operation. Our
rules are defined according to a formal and graphical
syntax which makes our specifications both clear, concise
and easy to write. Moreover, we give syntactic criteria
on rules which ensure that rules application preserves the
topological consistency constraints of the G-maps.

We have designed a prototype which consists in a rule-
based kernel of a topology-based modeler. Our tool can
be seen as a rule-application engine dedicated to our G-
map transformation rules. Thanks to syntactic criteria of
rules, we ensure the topological consistency of designed
G-maps. We have shown that the benefits of a rule-based
approach are unquestionable. First of all, the efficiency
of our prototype is comparable to other topology-based
modelers based on G-maps. Moreover, operations are
quickly designed and implemented and last but not least,
the prototype is easily and safely extensible.

From a pure topological point of view, the scale of
objects handled in our prototype is reasonably close
to those manipulated in real world modelers. For now,
the geometry is not fully integrated to our framework.
For instance, while our syntax of rules allows one to
match particular topological patterns as orbits, we cannot
consider geometric conditions to restrict the scope of a
transformation rule. In particular, this limitation does not
allow us to specify the Boolean operations. Indeed, it is
obvious that the computation of edge intersections mainly
depends on their geometric positions. We plan to extend
our rule-based language by incorporating such geometric
conditions. We also plan to develop a graphical editor for
our rules. Such a graphical interface will be useful to help
designers in the writing process of new rules.
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VIII. ANNEX

In order to convince the reader of the expressiveness
of our rule-based language, we specify four classical
topological operations by illustrating them with an intu-
itive representation and by giving the corresponding rules
according the syntax previously explained.

(a) Intuitive representation

HF<α0α1>

α3

0

HF<α0α1>

α3

1

HF<α0α1>

α3

0

HF<α0α1>

1

(b) Rule

Figure 21. Sewing two volumes along two isomorphic half-faces

(a) Intuitive representation

F<α0 _ α3> F<_ α2α3> F<α1α2α3>α1 α0

0 1 2

F<α0α1α3>

0

(b) Rule

Figure 22. Barycentric triangulation

(a) Intuitive representation

α3 α3α2 α3

HF<α0α1> HF<α0 _> HF<_ α2>α2 α1

0 1 2

HF<α0α1>

0

HF<α1α2>α0

3

(b) Rule

Figure 23. Cone from a face

(a) Intuitive representation

α3

V<_α2α3> V<α0 _ α3> V<α0α1 _ >
α1 α2

0 1 2

V<α1α2α3>

0

(b) Rule

Figure 24. Rounding a vertex


