
Jerboa: A Graph Transformation Library for
Topology-Based Geometric Modeling

Hakim Belhaouari1, Agnès Arnould1, Pascale Le Gall2, and Thomas Bellet1

1 University of Poitiers, Laboratory Xlim-SIC UMR CNRS 7262,
Bd Marie et Pierre Curie, BP 30179, 86962 Futuroscope Cedex

{hakim.belhaouari,agnes.arnould,thomas.bellet}@univ-poitiers.fr
2 Laboratoire MAS, Ecole Centrale Paris

Grande Voie des Vignes, 92295 Chatenay-Malabry, France
pascale.legall@ecp.fr

Website: https://sicforge.sp2mi.univ-poitiers.fr/jerboa

Abstract. Many software systems have to deal with the representation
and the manipulation of geometric objects: video games, CGI movie ef-
fects, computer-aided design, computer simulations... All these softwares
are usually implemented with ad-hoc geometric modelers. In the paper,
we present a library, called Jerboa, that allows to generate new model-
ers dedicated to any application domains. Jerboa is a topological-based
modeler: geometric objects are defined by a graph-based topological data
structure and by an embedding that associates each topological element
(vertex, edge, face, etc.) with relevant data as their geometric shape.
Unlike other modelers, modeling operations are not implemented in a
low-level programming language, but implemented as particular graph
transformation rules so they can be graphically edited as simple and
concise rules. Moreover, Jerboa’s modeler editor is equipped with many
static verification mechanisms that ensure that the generated modelers
only handle consistent geometric objects.

Keywords: topology-based geometric modeling, labelled graph trans-
formation, rule-based modeler tool-set, static rule verification, general-
ized map.

1 Introduction

Context. Geometric modeling is the branch of computer science that focuses
on modeling, manipulation and visualization of physical and virtual objects.
Over the past decade, numerous generic tools have been developed to assist
the conception of dedicated modelers (3D modeler for game design, CAD for
mechanical design, and so on). Even if such tools usually offer a wide set of
modeling operations ready to use, they may be not sufficient to answer new
requirements that are outside their scope or involve complex transformations.
Fig. 1 gives two examples of such specific modelers. Fig. 1(a) shows a modeler
dedicated to architecture which provides a specific operation of extrusion. From
a 2D map, the operation constructs a floor by distinguishing walls, doors and



windows. The right figure (Fig. 1(b)) presents a modeler devoted to the modeling
of plant growth (here a pear) and based on L-systems [TGM+09]. Both modelers
have in common that the consistency of manipulated objects is ensured by the use
of an underlying structure acting as a skeleton, called the topological structure.
Other pieces of informations attached to objects, as position, color, density, etc.
are of geometric or physical nature, and called embedding.

(a) Architectural modeler with a dedi-
cated extrusion operation

(b) L-System modeler simulating plant
growth

Fig. 1. Two geometric modelers with different application domains

Contribution. Graph transformations are already often used as key ingredients
of dedicated software applications [BH02]. We present a java library, called Jer-
boa, based on graph transformations and designed to assist the development of
new modelers whose objects and operations are specific to their application do-
mains. All applications developed by means of the Jerboa library share the same
topological model, the one of generalized maps (G-map for short) [Lie91], that
can be viewed as a particular class of labelled graphs. Operations on geometric
objects are specified by the developer as rules. These rules fall within the gen-
eral framework of graph transformations, more precisely of the DPO approach
on labelled graphs [EEPT06,HP02] and of rules with variables [Hof05]. The two
modelers glimpsed in Fig. 1 have been developed using the Jerboa library. While
classically data structures and operations of modelers are hand-coded in a low-
level programming language, modelers built over the Jerboa library inherit from
a predefined data structure implementing G-maps embedded (and being generic
with respect to object dimensions). Once data structures associated to the em-
bedding are given, operations are then defined as simple and concise rules. The
workflow of a Jerboa-aided modeler development can be briefly described as fol-
lows: first, the user develops the data structures needed to represent embedding
data, then, using the JerboaModelerEditor, he/she implements operations that
will be used in the final application by writing one rule per operation. The rule
editor comes with some static analysis mechanisms that verify both topological
and geometric consistencies of objects. Finally, the Jerboa rule application en-
gine ensures that rules are correctly applied. Note that rules manipulated in the



Jerboa library have been studied in some of our previous works. We first intro-
duced in [PACLG08] special variables to generically denote topological cells. As a
proof of concept, [BPA+10] presented a first prototype of a rule-based modeler.
But unlike Jerboa, this prototype was not generic with respect to embedding
data, but designed with a single predefined embedding (position of 2D or 3D
points). We introduced in [BALG11] rules built over embedding variables and
provided with syntactic conditions related to geometric constraints. The new
Jerboa library combines all these previous contributions with some additional
efficiency concerns.

Related work. Rule-based languages have previously been used for twenty years
in the context of geometric modeling. In particular, L-systems [PLH90] have
been introduced to model plant growth. As L-systems are based on iterated
applications of a set of rules until a stop condition is satisfied, they are suited to
represent arborescent patterns, like flowers or trees [MP96,KBHK07]. Moreover,
L-systems have already been used in a topological-based context in [TGM+09]
to model internal structure of wood, or to model leaves growth. Inspired by L-
systems, grammars were introduced to model buildings or to generate them from
aerial pictures [VAB10] in order to be displayed in navigation applications. All
these applications built over L-systems or grammars are defined by a limited set
of specialized high level operations. To our knowledge, while the latter are often
abstractly specified by means of some kinds of rules, they are mostly hand-coded
in a classical way. On the contrary, our rule-based approach remains independent
from the application domain and avoids any hand-coding, except the step of rule
writing.

Outline of the article. In Section 2, we briefly present the topological model
of generalized maps, and the way geometric elements are attached. We then
introduce the first elements of JerboaModelerEditor. In Section 3, we explain by
means of examples how an operation is defined as a rule in Jerboa and focus on
graph transformation techniques involved in the rule application engine. We then
present the different verification mechanisms that assist the design of correct
rules. Lastly, before concluding the paper in Section 5, we discuss about the
efficiency of the Jerboa library in Section 4.

2 Object Data Structure : Embedded Generalized Maps

2.1 Generalized maps

As already stated in the introduction, we choose the topological model of gener-
alized maps (or G-maps) [Lie91] because they provide an homogeneous way to
represent objects of any dimension. This allows us to use rules for denoting oper-
ations defined on G-maps in an uniform way [PACLG08]. Moreover, the G-map
model comes with consistency constraints characterising topological structures.
Obviously, these constraints have to be maintained when operations are applied
to build new objects from existing objects.
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Fig. 2. Cell decomposition of a geometric 2D object

The representation of an object as a G-map comes intuitively from its decom-
position into topological cells (vertices, edges, faces, volumes, etc.). For example,
the 2D topological object of Fig. 2(a) can be decomposed into a 2-dimensional
G-map. The object is first decomposed into faces on Fig. 2(b). These faces are
linked along their common edge with an α2 relation: the index 2 indicates that
two cells of dimension 2 (faces) share an edge. In the same way, faces are split
into edges connected with the α1 relation on Fig 2(c). At last, edges are split into
vertices by the α0 relation to obtain the 2-G-map of Fig 2(d). Vertices obtained
at the end of the process are the nodes of the G-map graph and the αi relations
become labelled arcs: for a 2-dimensional G-map, i belongs to {0, 1, 2}. Accord-
ing to the notation commonly used in geometric modeling, the labelling function
is denoted α and an arc will be qualified as αi-labelled. However, for simplicity
purpose, when representing G-maps as particular graphs, arcs will be directly la-
belled by an integer. Hence, for a dimension n, n-G-maps are particular labelled
graphs such that arcs are labelled in the [0, n] interval of integers.

In fact, G-maps are non-oriented graphs as illustrated in Fig. 2(d) : labelled
non-oriented arcs represent a pair of reversed oriented arcs that are identically
labelled. Notice that in order to be more readable, in all figures given in the
sequel, we will use the αi graphical codes introduced in Fig. 2(d) (simple line for
α0, dashed line for α1 and double line for α2) instead of placing a label name
(αi or i) near the corresponding arc. So, in the following, the way non-oriented
arcs are drawn will implicitly indicate the arc label values.

Topological cells are not explicitly represented in G-maps but only implicitly
defined as subgraphs. They can be computed using graph traversals defined by
an originating node and by a given set of arc labels. For example, on Fig. 3(a),
the 0-cell adjacent to e (or object vertex attached to the node e) is the subgraph
which contains e, nodes reachable from the node e using arcs labelled by α1 or
α2 (nodes c, e, g and i) and the arcs themselves. This subgraph is denoted by
G〈α1α2〉(e), or simply 〈α1α2〉(e) if the context (graph G) is obvious, and models
the vertex B of Fig. 2(a). On Fig. 3(b), the 1-cell adjacent to e (or object edge
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Fig. 3. Reconstruction of orbits adjacent to e

attached to the node e) is the subgraph G〈α0α2〉(e) that contains the node e and
all nodes that are reachable by using arcs labelled by α0 or α2 (nodes e, f, g and
h) and the corresponding arcs. It represents the topological edge BC. Finally, on
Fig. 3(c), the 2-cell adjacent to e (or object face attached to e) is the subgraph
denoted by 〈α0α1〉(e) and built from the node e and arcs labelled by α0 or α1

and represents the face ABC. In fact, topological cells (face, edge or vertex) are
particular cases of orbits denoting subgraphs built from an originating node and
a set of labels. We will use an ordered sequence of labels, encoded as a simple
word o and placed in brackets 〈〉, to denote an orbit type 〈o〉. In addition to
the orbit types already mentioned, we can mention the orbit 〈α0α1α2〉(e) on
Fig. 3(d) representing the whole connected component.

For a graph G with arc labels on [0, n] to represent an n-G-map, it has to
satisfy the following topological consistency constraints:

– Non-orientation constraint: G is non-oriented, i.e. for each arc e of G, there
exists a reversed arc e′ of G, such that the source of e′ is target of e, target
of e′ is source of e, and e and e′ have the same α label,

– Adjacent arc constraint: each node is the source of exactly n+ 1 arcs respec-
tively α0 to αn-labelled,

– Cycle constraint: for every i and j verifying 0 ≤ i ≤ i+ 2 ≤ j ≤ n, there ex-
ists a cycle labelled by ijij starting from each node.

These constraints ensure that objects represented by G-maps are consistent
manifolds [Lie91]. In particular, the cycle constraint ensures that in G-maps,
two i-cells can only be adjacent along (i− 1)-cells. For instance, in the 2-G-map
of Fig. 2(d), the α0α2α0α2 cycle constraint implies that faces are stuck along
edges. Let us notice that thanks to loops (see α2-loops in Fig. 2(d)), these three
constraints also hold at the border of objects.

2.2 Embedding

Topological structures of n-G-maps have been defined as labelled graphs whose
arc label set is [0, n]. We complete now this definition by using node labels to



represent the embedding data. Actually, each kind of embedding has its own
data type and is defined on a particular type of orbit. For example, a point can
be attached to a vertex, and a color to a face. Thus, a node labelling function
defining an embedding has to be typed by both a (topological) orbit and a
data type. For example, the embedding of the 2D object of Fig. 4(a) is twofold:
geometric points attached to topological vertices and colors attached to faces.
On the embedded G-map of Fig. 4(b), each node is labelled in this way by both
a point and a color. For example, the node g is labelled by both the point B and
the light color.

A

B C

D E

(a)

d

b

c

a

m n
l

j

k

i
g h

e f

A A

B

B

B

B

C

C

C

C

D

D E

E

(b)

Fig. 4. Representation of 2D object with multiple embedding functions

Actually, for embedded G-maps, we characterize a node labelling function
as an embedding operation π : 〈o〉 → τ where π is an operation name, τ is
a data type and 〈o〉 is a domain given as an n-dimensional orbit type. For an
embedded G-map G equipped with an embedding π : 〈o〉 → τ , we generically
denote bτc the set of values associated to the data type τ and g.π the value
associated to a node v by π. For the object of Fig. 4, the embedding operation
point : 〈α1α2〉 → point 2D associates the values A,B,C,D,E of type point 2D,
suggesting some 2-dimensional coordinates, to the topological vertices. Similarly,
an embedding operation color : 〈α0α1〉 → color RGB associates RGB coordi-
nates to the topological faces.

For an embedding operation π : 〈o〉 → τ , it is expected that an embedded
G-map G verifies that all nodes of any 〈o〉-orbit share the same value by π,
also called π-label or π-embedding. This defines the embedding constraint that
an embedded G-map G defined on a family Π = (π : 〈o〉 → τ) of embedding
operations has to satisfy [BALG11]: for each π in Π, each node is π-labelled on
bτc and for all nodes v and w of G if v and w belong to the same orbit of type
〈o〉, then v and w are labelled with the same π-label (i.e. v.π = w.π).



2.3 Creation of a new modeler

The previous subsections highlight that a modeler is statically defined by its
topological dimension and by the profile of considered embedding operations.
These static data will intuitively be the first inputs that should be entered by
using our editor, named JerboaModelerEditor, whose main function is the cre-
ation of a new modeler. The first step for creating a new modeler is thus to
give its name and its dimension. The second step is the specification of all em-
beddings through a pop-up, that requires informations such as the embedding
name, the associated orbit type and the data type. For execution issues, data
types are given in terms of built-in or user-defined data types of the underlying
programming language (in our case, Java).

Fig. 5. Main interface of JerboaModelerEditor

The main JerboaModelerEditor window is organized in several parts (see
Fig. 5). The upper leftmost box presents the previously described core informa-
tions as the modeler name, its dimension and the list of embeddings. The other
parts of the window are dedicated to the description of operations. The lower
leftmost box contains the current list of available operations (specified as rules)
for the modeler under construction. The central boxes are used for the edition
of a rule. More details are given in the next section devoted to the treatment
(edition, verification, application) of rules.



3 Operations on G-Maps Defined as DPO Rule Schemes

3.1 Formal framework

The formal background of Jerboa rules is the DPO approach [EEPT06], more
precisely, the DPO approach of [HP02] devoted to labelled graphs, extended with
variables in the style of [Hof05]. Roughly speaking, a DPO rule is in the form of a
span of inclusions L←↩ I ↪→ R, where L is the pattern to be matched in a graph
G under modification and R is the new pattern to be inserted in the transformed
graph, I being the rule interface, the common part of L and R. Our concrete
syntax (see Fig. 6) contains only two graphs: the left-hand (resp. right-hand)
side corresponds to the graph L (resp. R), the graph interface I being implicitly
defined as the intersection of left-hand and right-hand sides. The mapping of L
in the graph G to be rewritten is usually called the match morphism.

Roughly speaking, the application of rule schemes with variables can be
sketched as follows: the user gives first a match morphism from the left graph
structure, i.e. the underlying unlabelled graph, of the rule towards to the graph
structure of G. From there, the variables are instantiated in order to compute a
classical DPO rule without variable and a match morphism applicable on G. To
define topological-based geometric operations, two kinds of variables are used:
topological variables to match topological orbits [PACLG08], and embedding vari-
ables to match geometric or physical embedded informations [BALG11]. Thus
the application of Jerboa rules is defined in three passes: first, instantiation of
topological variables, then, instantiation of embedding variables, and finally ap-
plication of a basic rule. However, we will see that Jerboa rules are applied in a
one-pass process.

3.2 Editing topological rule schemes

To enable the design of operations generic in both terms of size and of orbit
nature, rules include topological variables [PACLG08]. The latter are denoted by
an orbit type and are instantiated as particular orbits of same type. In Fig. 6, the
left node of the rule is labelled with the face orbit type 〈α0α1〉, and thus allows
the user to match any face of an object. Its instantiation by the a node (resp. g
node) of the G-map of Fig. 4 gives rise to a triangular (resp. quadrilateral) face.

<α0, α1>

a

α1 α0<α0, _ >

a

<_ , α2>

b

<α1, α2>
point: expr

c

Fig. 6. Jerboa Rule of the triangulation for 2G-map
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All nodes of the right-hand side carry an orbit type of the same length, but
that can differ by deleting or relabelling arcs. Thus, all considered patterns are
isomorphic up to some orbit correspondence. More precisely, by using the special
character ’ ’, topological variables allow us to delete arcs. The left hand-side node
a : 〈α0 〉 combined with the face attached to the node a of the G-map of Fig. 4
allows us to build the G-map on Fig. 7(a): α0-labelled arcs are preserved while α1

ones are deleted. Thus, edges of the matched face are disconnected. Similarly, arcs
can be relabelled. The instantiation of the node c : 〈α1α2〉 with the face attached
to the node a of the G-map of Fig. 4 leads to the G-map of Fig. 7(b), where
α0-labelled arcs are relabelled to α1 ones, and α1 arcs to α2 ones. Thus, a dual
vertex of the matched face is added. Afterward, once each node is instantiated
by an orbit, all these orbits are linked together. More precisely, each arc of the
right-hand side graph is duplicated in several arcs linking instantiated nodes
sharing the same index. For example, the instantiation of the α0-arc linking
nodes b and c of the right-hand side graph leads to 6 α0-arcs linking bi and ci
nodes in G-map on Fig. 7(c). Thus, edges are added around the dual vertex.
Finally, the instantiation of the right-hand side of the rule of Fig. 6 on a triangle
face gives rise to the G-map of Fig. 7(d).

Some left nodes of Jerboa rules are denoted with a double circle, and called
hook nodes. Thus, in Fig. 6, the left node a is an hook. To apply a Jerboa rule,
each hook node of the rule scheme must be map to a node of the target object.
From an association between hook nodes and target graph nodes, the Jerboa
library automatically computes the match morphism (if it exists).

3.3 Editing geometrical rule schemes

The second rule edition step concerns the embedding counterpart of operations.
In Fig. 6, since point is an embedding operation, the left node a of the rule is
implicitly labelled with the a.point embedding variable. When instantiating the
topological variable by a particular orbit, embedding variables are duplicated
as many times as the size of the considered orbit. Thus for example on Fig. 7,
all instantiated nodes a1 to a6 are implicitly labelled with embedded variables
a1.point to a6.point.



On the right-hand side of rules, embedding variables are put together in
expressions built upon user-defined operations on embedding data types and
some predefined iterators on the orbits. In Fig. 6, the full expression of point
embedding of c node is not detailed, but it can be defined with the following
expression Φ(point〈α0,α1〉(a)) where point〈α0,α1〉(a) collects in a set all geometric
points associated to the nodes belonging to the 〈α0, α1〉 face orbit of a and Φ
simply computes the barycenter of a set of geometric points. c1 to c6 nodes are
labelled with embedded expressions Φ(point〈α0,α1〉(a1)) to Φ(point〈α0,α1〉(a6)).
Thus, c1 to c6 nodes are labelled with a common value, i.e. the barycenter
of the matched face. Moreover, right nodes without any associated embedding
expressions (like nodes a and b of Fig. 6) either preserve matched embedding
values or inherit from their embedding orbit. For instance, the right hand side
a node inherits from the point embedding of left hand side a node: each ai
node of Fig. 7(d) keeps its initial point embedding (as collected by the match
morphism). Since the b node is α1-linked with the a node in Fig. 6, it belongs to
the same 〈α1α2〉 vertex orbit and inherits from the point embedding of a node.
More precisely, each bi node of Fig. 7(d) inherits from the value of the point
embedding of the corresponding ai node. Thus, as a result, point embeddings
of the matched face are preserved and the point embedding of the new vertex
added by c is set to the barycenter of the face.

As previously explained, the Jerboa editor illustrated in Fig. 5, allows the user
to graphically edit left and right rule scheme patterns. In addition, an informative
toolbar summarizes the current selection and offers buttons to create/modify the
rule scheme, especially topological and embedding labels. Nonetheless, it allows
to change many settings like hide/draw the alpha link name, color convention
and so on. Finally, the editor can generate an image from the current rule (Jerboa
rules of this article were created with the SVG export).

3.4 Syntax checking

The main advantage offered by this editor is an on-the-fly verification of the rule
sheme, avoiding compilation errors and debugging. At each rule modification, the
editor checks simple syntactic properties numbered from (i) to (v) thereafter. (i)
usual lexical analyses are applied to identifiers and expressions annotating rules.
(ii) all labels carried by arcs are of form αi with i an integer less than or equal
to the modeler dimension. (iii) all orbit types labelling nodes are of the same
size, that is, contain exactly the same number of (α or )-elements; thus, all
nodes instantiated patterns are isomorphic only up to relabelling and deletion
of arcs. (iv) each hook node should be labelled by a full orbit type, that is, by
〈αi . . . αj〉 without any ’ ’ occurring in it. Indeed, at the instantiation step, the
targeted orbit is built by performing a graph traversal from a selected node, and
guided by the arc labels given in the full orbit type. (v) lastly, each connected
component of the left hand side of the rule should contain exactly one single
hook. This last condition allows us to compute an unique match morphism (if
it exists) or to trigger a warning message.



Fig. 8. Topology verification by JerboaModelerEditor

Beyond these basic syntactic properties, we showed in [PACLG08,BALG11]
that some additional syntactic properties on rules can be considered to ensure
object consistency preservation through rule application, that is, to ensure that
resulting objects satisfy both the topological consistency and embedding con-
straints given in Sections 2.1 and 2.2. For example, the preservation of the ad-
jacent arc constraint can be ensured by checking for each node how many arcs
are linked to. First, all removed and added nodes should have exactly n+ 1 arcs
respectively α0 to αn-labelled, including arcs that are implicitly handled by orbit
types attached to them. In Fig. 6, the b node has two explicit arcs linked to it
and labelled resp. by α0 and α1 and one implicit arc linked to it and labelled
by α2, provided by its topological type (〈 α2〉). Secondly, preserved nodes must
have the same links on both sides. In Fig.6, on the left, the a node, typed by
〈α0α1〉, is given with two implicit arcs, resp. labelled by α0 and α1, and on the
right, the a node, being typed by 〈α0 〉, keeps an implicit α0-arc and is linked
to a new α1-arc.

To preserve the embedding constraint, Jerboa checks that each embedding
orbit of Jerboa rule carries one and only one embedding expression. But the
instantiation of topological variables produces several embedding expressions
which do not necessarily have the same value. Jerboa computes the first one
and ignores the following ones: by default, the computed value is attached to all
nodes belonging to the embedding orbit.

By lack of space, other advanced syntactic conditions are not more detailed.
All syntactic conditions are on-the-fly checked by the JerboaModelerEditor. The
editor shows the encountered errors directly in the graph and identifies the in-
criminated nodes. In Fig. 8, nodes a and b are decorated by warning pictograms.
All errors are detailed in the console: the right-hand side a node has two α0 links
and loses an α1 link, and so on.

3.5 Jerboa rule application

The Jerboa rule application has been sketched by means of the three following
steps: the instantiation of topological and embedding variables, and the applica-
tion itself. In practice, these steps are done at once by the rule application engine
encompassed in the Jerboa library. Let us emphasize that this rule application
engine is unique and is able to apply any rule of any generated modeler.
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# a → a b c

1 0 → 0 14 15

2 7 → 7 16 17

3 6 → 6 18 19

4 5 → 5 20 21

5 4 → 4 22 23

6 3 → 3 24 25

7 2 → 2 26 27

8 1 → 1 28 29

(b) Inner matrix

Fig. 9. Rule application and inner structure of the triangulation

First the engine instantiates the topological variables and computes the
match morphism if possible. For example the application of the Jerboa rule
of Fig. 6 on the left object3 of Fig. 9(a) allows to complete the first column of
the inner matrix given on Fig. 9(b). For that, once the user has mapped the
hook node a of the rule scheme to the node (0) of the object, one line is created
in the matrix for each node of the orbit 〈α0α1〉 of (0). For a rule with multiple
hooks, this step can fails and the engine triggers an exception.

Secondly, the right part of the inner matrix is completed in accordance with
the right-hand side of the rule. As shown on Fig. 9(b), names of preserved nodes
are copied, and names of added nodes are created. Then, the created part of
the rewritten object is computed. This part corresponds to the two last columns
of nodes b and c on Fig. 9(b). Each arc of the rule is duplicated for each inner
matrix line. Thus, the α0-arc between b and c nodes produces α0-arcs between
(14) and (15) nodes, . . . , between (28) and (29) nodes. First, each arc of the
instantiated orbit of the hook is translated for each inner matrix columns up
to relabelling or removing on added nodes. The α1-arc between (0) and (7) is
α2 relabelled between (14) and (16), and between (15) and (17), the α0-arc
between (7) and (6) is not added between (16) and (18), and α1 relabelled
between (17) and (19), . . . , the α0-arc between (1) and (0) is not added
between (28) and (14), and α1 relabelled between (29) and (15).

Before further topological modification, the new embedding values are com-
puted. Indeed, evaluations of embedded expressions depend on initial embedding
values, but also on the topological links in the initial object. We use the fact that
all orbits of same embedding type necessarily contain nodes sharing the same em-
bedding value (with respect to this considered embedding function). The engine
computes new embedding values but does not yet replace them in the nodes

3 Note that graphviz exportation is used to generate from our generic viewer that uses
barycentric coordinates as exploded view.



to avoid any corruption of the next embedding value computations. Instead,
those values are memorized in a private buffer of the engine. The treatment of
topological variables is completed by relabelling the preserved nodes with new
embedding values and connecting them to the added nodes with appropriate
embedding values.

This way of processing Jerboa rule application calls for a comment on the
management of the embedding values. The case of the merge of two embedding
orbits could lead to a non-deterministic choice between the two original embed-
ding values. To avoid such a situation, the editor asks for a unique embedding
expression, that is sufficient to ensure the embedding expression constraint.

4 Discussion

Examples. We briefly introduce some non-trivial operations. First, we propose
the Catmull-Clark operation used to smooth face by performing some face sub-
division mechanisms. The rule for a 3D modeler is described on4 Fig. 10(a) and
Fig. 10(b) illustrates the successive applications of this rule on a mesh.

α3

<α0,α1,α2>

n1

α0

α3

α1

α3

α0

α3α3

<_ , α1, α2>
point: Po...

n1

<_ , _ , α2>
point: Po...

n3

<α2, _ , _ >
point: Po...

n4

<α2, α1, _ >
point: va...

n5

(a) Rule obtained

(b) Successive application of the rule

Fig. 10. Illustration of the Catmull-Clark smoothing operation

Second, the Sierpinski carpet is a fractal on a 2D surface (in higher dimension,
this fractal is called Menger sponge). The rule, presented on Fig. 11(a), matches
a face and produces eight faces from it. Fig. 11(b) shows successive applications
of this rule on a simple 2D face.

4 By lack of space, complete embedding expressions are omitted.
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(a) Obtained rule

(b) Successive application of the rule

Fig. 11. Illustration of the Sierpinski carpet

Performance and evaluation. In this section, we present a comparison between
Jerboa and another similar library. As far as we know, only few libraries offer
the ability to manipulate G-map (Moka [Mod] and CGoGN [KUJ+14]), and
most of them are designed in a similar way. We choose the well-known and
established Moka modeler and compare the performances of both Jerboa and
Moka by benchmarking them on two operations that are already fully optimized
in Moka.

The first operation (see Fig. 12(a)) is a generalization of the basic face trian-
gulation in which all faces of a connected component are triangulated at once.
The main difference with the previous version (Fig. 6) is that the left-hand side
matches more dimension and the right-hand side manages the third dimension.
The second operation is volume triangulation, i.e. the subdivision of any (con-
vex) volume into linked pyramids whose common vertex is the volume barycen-
ter. Fig. 12(b) presents the Jerboa rule in which the left-hand side matches a
full volume. In the right-hand side, the node n3 represents the center of the sub-
division while nodes n2 and n3 represent sides of inserted faces. Let us notice
that the border faces remain unmodified.

Tests have been executed on a Core i7-2600 – 3.4GHz with 8GB of RAM,
under Linux/Ubuntu 12.04 LTS system with JDK 7 of Oracle. We computed the
average time of operation execution in both modelers with a single embedding
of geometric points5 to represent 3D objects. We used the same objects for both
libraries, with various sizes (from 4 nodes to 3 millions nodes). To summarize,

5 By default, a Moka modeler is only defined by this unique embedding



<α0,α1,α2,α3>

n0

α1 α0
<α0,_,α2,α3>

n0

<_,α2,_,α3>

n1

<α1,α2,_,α3>
point: expr

n2

(a) Triangulation of all faces at once

<α0,α1,α2>

n0

α2 α1 α0
<α0,_,α3>

n1

<_,α2,α3>

n2

<α1,α2,α3>
point: expr

n3

<α0,α1,_ >

n0

(b) Triangulation of volume

Fig. 12. Two Jerboa rules of triangulation operations

Jerboa shows better performances than Moka for the triangulation of all faces at
once whereas Moka is better considering the volume triangulation. There is no
better optimization than tuned optimization carefully performed by a developer,
and Jerboa is implemented in Java language that is recognized to be slower than
C++: this can explained why generally, Moka has still better performances than
Jerboa. The better performances of Jerboa for the face triangulation operation
is due to the fact that the Moka developer has intensively reused existing codes.

To conclude this section, we wish to emphasize the ease of developing new
operations using Jerboa. Classically, the development of a modeler’s operation
is done by hand-coding with all induced problems: debugging, verification steps
on customized objects, and so on. While developers usually mix inside the same
code topological and embedding considerations, developing with Jerboa imposes
a clear separation of topological and embedding aspects, and even more, requires
that static parts are declared before designing operations. Thus, as regards the
code development, using Jerboa brings two clear advantages: a significant gain
in time and a high level of code quality. For instance, for the two operations
discussed above and given in Fig. 12, we only took half a day.

5 Conclusion and Future Works

This article introduces a novel tool set dedicated to rule-based geometric mod-
eling based on G-maps. This tool set includes the JerboaModelerEditor, that
allows a fast characterization of any new dedicated modeler and a fast design
of its operations in a graphical manner, assisted by static verification steps.
When the design is over, the Jerboa library produces a full featured modeler
kernel that can be used in a final application. Moreover, the produced mod-
eler is highly reliable as generated rules take benefit from graph transformation
techniques ensuring key consistency properties.

Jerboa has been successfully used in other works, especially for the adapta-
tion of L-Systems with G-map or in an architecture context (see Fig. 1). These
experimentations allowed us to identify some required features for the next ver-
sion of Jerboa, as the need of stronger verification mechanisms of the embedding



expressions or the need of a rule script language in order to apply several rule
schemes accordingly to some strategies.
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