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Abstract

The estimation of petroleum reserves entails complex fluid simulations mostly based on finite volume
methods. These simulations are operated on 3D meshed reservoir models produced by a complex and
poorly automated chain of operations. This paper proposes a mesh building methodology, which uses
geological rules for building reservoir meshes in a semi-automated way.

We start from a surface structural model and a description of the stratigraphy bundled together thanks
to the industry standard RESQML. We construct a structural framework based on generalized map
topological  structures.  These  structures  include  topological  boundary  relations  between  the
represented  geological  objects  (horizons,  faults,  units)  and  some  dedicated  data  attached  to  the
topological cells (vertices, faces, volumes, etc.), such as geometry or geological labels (e.g. names,
relative ages, deposit methods). In particular, on a single topological representation, we can attach two
different geometric representations that respectively describe the present-day layer geometry and the
original positions of the various layers in their “deposition space”.

Using a dedicated rule-based language, we introduce a set of topological and geometric operations
based on the geological interpretation that allow an automated building of the structural framework,
on which the reservoir  meshes will  be implemented.   This language allows a fast  prototyping of
complex operations (boolean operations for instance) and it guarantees the geological and topological
model consistency. 

From  this  fully  consistent  structural  framework,  we  can  automatically  create  various  conformal
unstructured 3D meshes organized in layers. These meshes agree both with the topology induced by
the succession of deposition, erosion and tectonic events that constitute the local geological history,
and with the peculiarities of the used fluid flow simulators. A use-case is presented to demonstrate the
feasibility of our method. 

Introduction  

A significant part of a geological reservoir study depends on fluid flow simulations operated on 3D
geological  models  (sets  of  horizons  and  faults).  The  construction  of  these  models  is  based  on
interpretations formulated by geologists using the data collected by seismic and drilling surveys. Fluid
flow simulations  operated  on  these  models  provide  additional  subsurface  information  about  the
economic potential or the storage capacity of the studied reservoir. These are essential in the case of
hydrocarbon reservoirs for estimating the volume of petroleum that can be extracted.

Resting on material balance equations [IMMA10], fluid flow simulations for petroleum exploration
take into account both the physical properties of the rocks (porosity, permeability, density) and those
of the fluids that they contain (porosity, permeability, density, viscosity, pressure). The efficiency of
the involved computational  methods (finite elements or finite differences) greatly depends on the
quality  of  the  used  3D meshes.  Meshing  the  geological  units  that  constitute  a  reservoir  and  its
surrounding  is  therefore  a  difficult  problem  since  meshes  need  not  only  to  meet  computation
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requirements  but  also  to  handle  structurally  complex  geological  environments.  In  particular,  the
stratigraphic units that constitute the reservoir environment are not always flat. They may be more or
less  deformed  by  folds  and  interrupted  by  faults  whose  orientations  have  little  to  do  with  the
orientations of the layers themselves.  These various requirements are contradictory and make 3D
geological meshing an actual challenge for the geoscientists and mathematicians involved in earth
modeling.

In the present paper we propose a new method to face this challenge. In order to ease the meshing
process,  our  method intends to  take better  account  of  the  evolution of  geological  layers  through
geological history. The sedimentary layers that constitute the petroleum reservoirs were originally
deposited in a flat position within sedimentary basins and they were only deformed later by tectonics.
Our method basically consists in first  building 3D meshes in the deposition spaces of the various
geological units by taking advantage of their flat position and then transposing these meshes in the
present  space of  the  model,  in  which these units  are  more or  less  intensely deformed.  This  step
requires to operate an interpolation from the deposition spaces of the model to present day space. In
order to make this interpolation efficient, topological models allow to simultaneously handle several
different geometric spaces thanks to neighborhood relationship. In our case, the use of the topological
model  of  Generalized  Maps  [Lie94]  allow  us  to  simultaneously  describe  the  situation  of  the
geological  layers  in  their  deposition space  and in  the  present-day  space.  We will  show that  this
approach greatly simplifies the construction of 3D meshes, ensures their better conformation to the
layer geometry and allows to keep a fully consistent topology throughout the model building process.

The paper is organized in the following way. We will first present the state of the art regarding 3D
meshing for geology and topology description tools. We will then present the workflow that we use
and detail its different steps. We will particularly describe the 3D meshing process of stratigraphic
units, especially when faults locally disturb the local geology. We will conclude by emphasizing the
advantages of the proposed method and by describing how we intend to make it operational in the
various geological configurations occurring in subsurface reservoirs.

State of art

Mesh Quality

The meshes resulting from the final stage of the modeling process must be fit to be the support of
fluid flow simulations. The simulation quality directly depends on the mesh quality, regarding several
requirements.  

The meshes must first be oriented everywhere in accordance with the local stratification. Difficulties
appear  when stratigraphic  unconformities  are  met,  since they induce abrupt  changes in  the  layer
orientations. 

The  meshes  must  also  be  built  in  accordance  with  the  fault  directions.  This  requirement  adds  a
difficulty since faults are not always perpendicular to the layer surfaces. The meshes must also be
well-formed: homogeneous, mostly composed of cuboids and such that the line joining the centers of
two neighbor cells are sub-perpendicular to the edge that separates them. In Figure 3, the left mesh
respects the previous constraint and therefore looks better than the right mesh. 

Finally, the cell must preferably be oriented perpendicularly to the flow direction that goes from one
well to another. This last constraint is more or less contradictory with the two previous ones since
once a mesh have been built to satisfy them, it must be deformed to conform with layer and fault
orientations. Therefore optimal meshes are difficult to build and necessarily result from compromises.
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Figure 1 Good quality mesh Figure 2 : Bad quality mesh

Figure 3 : Mesh quality representation

Methods and tools

Several methods allow to mesh a 3D geological scene. We can categorize them by the two types of
resulting data structures: non-topological structures consisting in structured meshes or unstructured
meshes, and complex topological structures [PR13].

Most  unstructured  meshes  are  based  on  tetrahedrons  [CSPL+15]  and can  also  be  represented  as
Voronoï meshes. The resulting spatial discretization allows to operated fluid simulations based on
finite-element methods but not the widespread ones based on finite-difference methods. Structured
meshes essentially use grids, which can sometimes be assimilated to topological structures since they
efficiently allow the identification of the cell neighbors. Orthogonal cartesian grids are the simplest
grid structures. They are well-adapted to finite-difference or finite-element simulations but they can
only handle basic scenes without structural complexity. They have been derived into corner point
geometry grids that consist in defining the vertices of the eight corners of each cell. These grids allow
to represent  more  complex  and realistic  structures  but  they  generate  distortions  which  affect  the
numerical precision of simulations [Yah13]. 

Topological approach

Topological  data  structures  separate  the  topological  and  the  geometric  aspects.  Topological  data
structures describe neighbor relationships between cells (vertices, edges, faces, volume) which can be
used to efficient  process the model.  A topological  model  may also handle various dedicated data
-called embeddings- such as geological labels or property values. The geometry is usually one of
these embeddings. Since topological data structures allow to create local consistent operations, they
ease the definition of meshing operations, by successively modifying the neighbor relationships and
the embeddings. 

The topological model proposed in this article lies on
the  Generalized  Maps  (G-maps)  [Lie94]  which
explicitly represent the neighbor relations for all cell
dimensions.  Object  consistency  is  ensured  by
topological and embedding constraints. The Figure 4
shows  a  G-map  example  which  exhibits  different
relationships  (colored links)  between cells.  We can
see that along faults, two different blocks may have
geometrically  common  faces.  Within  a  topological
model,  these  faces  explicitly  share  a  neighbor
relation.  These  relations  prevent  undesired  holes
between mesh cells. They also ease fluid simulation,
since  they  directly  determine  where  the  fluid  can

flow out.

ECMOR XV - 15th European Conference on the Mathematics of Oil Recovery
29 August – 1 September 2016, Amsterdam, Netherlands

Figure 4: Topological representation of two unities



Figure 6 : Good quality mesh subdivided Figure 8: Bad quality mesh subdivided

In [Gui06], G-maps are used for representing the 2D parts of a complex geological scenes. All the
represented entities are cut along intersections to produce a boundary representation (B-rep) of each
unit’s block. However the method does not provide a remeshing of these blocks in order to operate
simulation. 

Topological operations 

We use a graph representation of G-maps that allows us to benefit from the graph transformation rules
to efficiently prototype modeling operations [BPAF+10, BALG+14]. Mathematically proved, graph
transformations are able to graphically define operations while preserving topological and embedding
consistency. In practice, using the modeling tool called Jerboa [Jerboa], operations rules are designed
with a graphic interface which validates the topological and embedding constraints criteria on the fly.
Once correct,  rules can then be directly applied within Jerboa to model objects.  This approach is
therefore  particularly  well-suited  to  consistently  design  the  complex  operations  involved  in
geomodeling.

Figure 7 presents the example of the Catmull–Clark surface subdivision. This operation defined by the
rule of Figure 5 divides any face into multiple quad faces depending of the arity of the original face.
Figure 7 shows the respective applications of this operation to the two objects of  Figure 3. On the
topological  aspect,  the  rule  consistently  subdivides  the  face.  On  the  embedding  aspect,  the  rule
computes all  the geometrical values attached to the new edges and may for instance update their
geological  identities.  Note that  this  rule is  quite simple regarding the complexity of the operated
subdivision.
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Figure 5 : Graph transformation rule of a subdivision scheme

Figure 7 : Application of the subdivision rule



Proposed workflow

Figure 9 shows the common workflow of our approach. Each step is sequentially detailed in this

section.

Geological interpretation

The   geologists  in  charge  of  modeling  subsurfaces  initially  consider  raw  data  issued  from both
reflection seismic and drilling surveys (cf. geological interpretation in  Figure 9). The interpretation
process consists in identifying the various geological horizons in view of their signatures (seismic
horizons, well markers). This allows the geologists to infer the horizon geometry and by means of a
Geological Interpretation Schema (GES) [PR13], they can add geological attributes -age, typology
(parallel,  unconformable)-  to  each  identified  horizon.  The  geologists  also  try  to  identify  faults,
characterize their geometry and to specify their chronological and topological relationships with the
identified horizons. This information concerning faults is itself introduced into the GES in order to
constitute a fully formal interpretation of the model.

Geological  interpretation  is  a  tedious  and  under-determined  process  that  deeply  depends  on
geologists’ knowledge. Several interpretations and GES’s can be attached to one set of raw data. It is
therefore essential to keep the memory of all the data and interpretations attached to a given earth
model in order to be able to evaluate its reliability and to possibly modify the geological interpretation
at any time. This is possible by using the RESQML standard [RESQML] which offers the possibility
of encompassing both raw data and geological interpretations. 

The horizon and fault interpretations, along their formalized interpretations expressed through GES’s,
constitute the starting point of the modeling approach that we will now describe. A major advantage of
this  methodology is  its  flexibility. It  allows the building of  several  models  for  one reservoir   in
accordance with several possible interpretations.

Structural modeling

The building of a structural model constitutes the first important step of the reservoir building process.
The structural  model consists in an assembly of the geological  surfaces, which is consistent  both
geologically and topologically. It constitutes the “skeleton” of the reservoir model. 
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Figure 10 : A raw horizon interpretation Figure 11 : Surface modeling of the horizon

Figure 12 : Computing horizon/fault intersections Figure 13 : Processing “STOPS AT” rules

Figure 14 : Opening faults lips Figure 15 : Identifying horizon/fault contacts

Figure 16 : GeoTopoModeler structural modeling

The Geosiris GeoTopoModeler prototype [GTM] provides tools to specify the various contacts of the
structural model (horizon/horizon and horizon/fault contacts) and to accordingly operate the necessary
intersections and the removing of the parts of the surfaces that do not enter into the model. The GTM
is based on the CGoGN topology-based data structure - which provides an efficient combinatorial
maps  implementation  -  in  combination  with  the  SCHNApps  modeling  framework
[CGoGN/SCHNApps].  The  GTM principles  are  illustrated  in  Figure  16.  The  input  of  the  GTM
consists  in a RESQML V2.0.1 package containing both raw interpreted data (see  Figure 10) and
formalized geological knowledge about the subsurface structure. In the first step (see Figure 11), we
model the horizon surfaces thanks to a spline analysis of the raw interpreted data [MBA]. For this
purpose, we remove unreliable data close to faults.  In the next step (see  Figure 12), we compute
horizon/faults  intersections.  These intersections are then processed,  thanks to semantic knowledge
provided by geologists (see  Figure 13). For instance, we consider that faults do normally not cross
each others but stop one on the others. The last step consists in opening the fault lips according to
local geometry (see  Figure 14) and in labeling the corresponding horizon/fault contacts. Since each
contact is split into a foot-wall and hanging-wall lip, each colored polyline in Figure 15, fits with one
labeled contact lip. Our labeling convention allows one:

● to  trace back the fault to which a given contact lip is attached,  
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● to  identify the link between the foot-wall and hanging-wall sides of a given contact,
●  to identify the link between the contacts lips of the different horizons belonging to a set of

stratigraphic units (Stratigraphic Unit Stack [PR13]).

The result provided by the GTM prototype is a 3D surfacic model consisting in a set of horizons
surfaces decorated with some labeled contacts.

3D Modeling

In order to build adequate 3D meshes, we need to know the geometry of the various horizons in their
initial  deposition situation [HBBDR10, PBRB12].  Our topological model  defines two geometrical
embeddings with their additional semantics mechanism. Initially, the structure is embedded with the
geometry obtained from the structural part. It corresponds to what we call the  present geographic
space. By operating unfolding methods [TGM05] on each geological unit, additional geometries are
then computed which are those of the initial deposition space  of each of the processed units. Our
topological  structure  has  the  ability  to  switch  between  the  geometries  of  the  geographic  and
deposition spaces and to ensure topological consistency between each couple of geometries in the
course of any modeling operation.  Figure 19 shows an example of this double geometry for two
horizons. The left part of the figure (see Figure 17) corresponds to their deposition space in which the
horizons  are  flat   while  the  right  part  of  the  figure  (see  Figure  18)  corresponds  to  the  present
geographic space.

Figure 17 : Horizons in the deposition space Figure 18 : Horizons in the present geographical space

Figure 19 : Horizons representation in the different spaces

We define a geological block, as a part of a geological unit surrounded by faults. For a 3D meshed
model, we first consider the deposition spaces of the various units and, for each one, we project a 2D
mesh onto each horizon (top and bottom) of each block. Thereby, the top and bottom meshes are
aligned  in  each  deposition  space.  Moreover,  the  projection  of  a  single  2D mesh  guarantees  the
concordance between the  successive units which are not separated by unconformities.
This feature allows to easily find the link between the top and bottom horizons vertices. In each block,
pillars are weaved between the corresponding vertices of the top with the bottom surfaces of the unit
in order to define a 3D mesh. Faults are then introduced into this elementary regular 3D mesh and the
topology is updated.

A correct topology taking the faults into account is thus established for the meshes attached to each of
units in its deposition space. To construct the final meshed model, it then remains to transport these
various meshes into the geometric space. The main advantage of our topology based approach is its
ability to keep during this operation the topologies constructed in the various deposition spaces. This
is the strong point of our method. Details on the 3D mesh modeling within stratigraphic units will
now be given hereunder.

Stratigraphic unit 3D meshing

This  section  provides  details  about  the  generation  of  meshed  stratigraphic  units  fulfilling  the
constraints imposed by the fluid flow simulation. 
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Preliminary horizon 2D mesh

The  preliminary  step  consists  in  limiting  the  structural  mesh  within  a  definite  box  of  interest
corresponding to the part of the model that the modeler intends to consider. This limitation reduces the
complexity of the mesh and guarantees to obtain closed object in our model.

The main step consists in creating quad surfaces in the deposition space from the horizons surfaces. In
order to satisfy the concordance constraint, we already mentioned that we use a unique regular grid
projected on the top and the bottom horizons of the meshed block (see Figure 20). The regular grid
may depend on various parameters such as the cell size or the grid basis (units vectors in its 2D
plane).  This  way of  proceeding avoids  the possible  trouble of mixing the original  mesh and our
consistent new mesh.

A new surface is produced for each horizon thanks to the regular grid, in which the location of each
vertex is led by the original horizon surface.  Figure 22 shows the new surfaces composed only of
quad faces having all  the same Z coordinate.  The vertex locations are then interpolated from the
deposition space to the geographic space with the nearest face as shown in the Figure 24.

Figure 20 : Triangulated horizons in the deposition space
with the regular grid

Figure 21 : Projection of the regular grid on horizons

Figure 22 : New horizons surfaces
Figure 23 : Fault lips insertion

Figure 24 : New horizons surfaces in the present geographical space

Figure 25 : Horizon 2D mesh process
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The last  step consists in intersecting,  each new horizon surface with the original  fault  surface. A
classic Boolean operation [Zho16] is applied based on the fault faces and on the faces of the new
horizon surface. The Figure 23 illustrates the complete 2D meshes with fault lips on the embedded
regular grids.

Construction of one 3D mesh per block

The condition for modeling the mesh between the top and the bottom surface of a geological unit, is
that the two horizons have the same 2D mesh (except for fault lips position). Thus, a quad face can be
the top/bottom face of a 3D mesh, and there is no need to apply Boolean operation to the top and the
bottom to have two fitting 2D meshes. Thanks to the regular grid projection, this property is already
satisfied.

However, some meshes are intersected by faults. To correctly model each part of these meshes in the
hanging-wall and foot-wall blocks, it is necessary to determine the position of the fault in the unit
deposition space. Of course, the fault did not exist at the time of the unit deposition, but its geographic
position corresponds to a defined position in the deposition domain. Due to the sliding of the blocks
along the fault,  the line of intersection between a horizon and the fault  surface has two different
positions, one on each side of the fault. These two positions in the geographic space can be computed
by interpolation considering the position of the fault surface in the deposition space. And thanks to the
richness of our G-map topological model, these various positions of the fault/horizon intersection can
be considered as different embeddings of one single topology (see Figure 28). Each vertex of the fault
has this three positions: one in the present geographic space, and two in the deposition space. These
last positions are computed by interpolation from the positions of fault lips in the deposition space.

3D meshes can thus be created by simply linking the top and bottom of each unit by  what we call
pillars. The pillar computation is operated in the deposition space. In this space, the pillars are vertica l
since  the  same  2D  mesh  has  been  used  on  the  top  and  bottom  of  the  unit,  making  the  pillar
construction  a  simple  operation.  Nevertheless,  this  allows  the  creation  of  pillars  that  follow the
directions of the layers in the geographic space even if these layers are significantly deformed.

The creation of meshes by means of pillar is simple as long as we remain far from faults. However  in
the vicinity of a fault, we need to check whether the pillars intersect the faults surface or not. Then,
any intersected pillar is considered to have one extremity set on its intersection with the fault surface
while the other one remains hooked to an horizon.

Figure 26 : Example of fault in geographic space Figure 27 : Fault interpolation in the deposition space

Figure 28 : Representation of the fault position in geographic space and in deposition space

We have obtained consistent meshes far from faults, and open meshes - that have to be closed - near
the faults. The next step then consists in creating the missing faces along the fault surface in order to
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close the blocks. There exist different case of open faces: faces on the side (with just one edge is along
the fault), faces in the middle (all edges are along the fault) or faces resulting of multiple cuts by a
fault network (see Figure 31).

Figure 29 : Blocks with one fault Figure 30 : Blocks with two faults

Linking blocks

All the blocks can then be connected together. We intend to finalized this part of the process in the
coming months. As we mentioned before, linking two blocks belonging to a set of conformable units
along an horizon is a simple operation since it just consists in a mesh sewing. But the block linkage is
not so easy along faults. In this case, the fault shift induces a lack of concordance across the fault
between the meshes belonging to the foot-wall and to the hanging wall.  
In this case, to realize the mesh linkage, it is necessary to split each faces of the mesh along the faults
surface in order to match it with faces of the opposite blocks, which is a complex Boolean operations.
The difficult part is the intersections between the faces. The faces of two blocks along the fault do not
belong to one same plane. Therefore,  the intersection between the faces must be performed on a
common median plane, which must be carefully defined.

Extraction of block boundaries

Boundary representation (B-Rep) is decisive for studying subsurface. Thanks to our topology-based
data structure and our modeling process, the geological blocks boundaries can be easily extracted
from 3D meshes. This extraction mainly consists in simplifying the blocks meshes.

Figure 32 : A single block meshed Figure 33 : Simplified block extracted Figure 34 : Extracted block in wireframe

Figure 35 : Block extraction process
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Figure 31 : 3D mesh per block



We take benefit of the topology to easily determine whether a face is inside a block or on the border.
We then remove the inner faces.  Then, the unnecessary edges are removed. They are identified by
semantic label (side, top, bottom and fault faces of the block) and geometric criteria. This geometric
criteria rely on normal vector to characterize coplanar faces.Figure 35 shows different views of one
block extraction. Figure 34 illustrates the suppression of inner faces and simplification of the border.
Figure 34 shows the simplification of faces which satisfy the geometric criteria, and therefore side
faces are collapsed whereas the top and bottom surface remain unaltered. Finally, Figure 33 presents
the simplification result from the fault side block.

Conclusion

We have  introduced  in  this  paper  a  3D subsurface  meshing  method  that  is  part  of  a  complete
geomodeling workflow. Our method relies on a rich topology-based data structure: the G-maps, which
allows to efficiently associate several types of data to a given topological structure. These data include
two  geometries  (one  in  the  initial  deposition  space  and the  other  in  the  present-day  space)  and
semantic labels for identifying horizons, faults, etc. Moreover, we use graph transformations rules in
order to speed up the development of complex modeling operations.
So far, this meshing method already allows us to obtain a 3D subdivision of blocks concordant with
horizons and more generally with stratigraphic sets of conformable units. In addition, it allows the
extraction of boundary representations of the block outer hulls.

The realized geometric modeling operations have been tested on synthetic data examples (see section
4). We are presently working on real data examples in order to refine and test the scalability of our
methodology.  In  the  near  future,  the  method  will  be  extended  in  order  to  achieve  the  fault
concordance by replacing the current  grid with a suitable 2D mesh. We will  also extend our cell
division methodology of 3D mesh in order to take into account stratigraphic unconformities (erosions
and onlaps). Furthermore, that data exchanges between the various workflow steps will be adjusted in
order to be operated  through the RESQML format.
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